• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

In-Storage Accelerator Architectures for Large-Scale Sparse Matrix Processing

Research Project

Project/Area Number 21K17720
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60040:Computer system-related
Research InstitutionTokyo Institute of Technology

Principal Investigator

Chu Thiem Van  東京工業大学, 科学技術創成研究院, 助教 (80838235)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords疎行列処理 / 疎行列疎行列積 / データフロー / アーキテクチャ / FPGA / SpMSpM / アクセラレータアクセラレータ / アクセラレータ / FPGAプロトタイピング / インストレージコンピューティング
Outline of Research at the Start

本研究では,ビッグデータや機械学習等の多くアプリケーションで求められている大規模疎行列処理を高速化するためのアクセラレータアーキテクチャの確立を目指す.アクセラレータをストレージ内のカスタムハードウェアで実現するアプローチを用いる.ストレージチップ内のデータを低レーテンシかつ高バンド幅でアクセスできるというストレージ内処理の最大の利点を活用するのと,実際の多くのアプリケーションで同時に求められている疎行列・ベクトル積,疎行列積,疎行列転置という3つの主要な疎行列処理のいずれもサポートできるマージソータ,ネットワーク・オン・チップベースのヘテロジニアスメニーコアアーキテクチャを研究開発する.

Outline of Final Research Achievements

This study aims to develop a comprehensive sparse matrix processing architecture, including an in-storage accelerator architecture, to perform large-scale sparse matrix processing with high performance and efficiency. As the first step, the research focuses on the basic operation of sparse-sparse matrix multiplication, advancing the study of a high-performance and efficient architecture, and implementing and evaluating a hardware prototype using FPGA (Field-Programmable Gate Array). Major achievements include the presentation of a paper at the Asia and South Pacific Design Automation Conference (ASP-DAC'24), three invited talks, and two awards.

Academic Significance and Societal Importance of the Research Achievements

本研究の成果は,疎行列処理の高速化と高効率化を実現することで,ビッグデータ解析,機械学習,科学計算の複雑なシミュレーションなど多くのアプリケーションにおいて重要な計算カーネルの性能向上および計算資源の節約に寄与する.本研究によって提案された手法は,学術的にはアーキテクチャおよびハードウェア設計に新たな知見を提供し,社会的にはデータ分析や人工知能などの発展に大きな影響を与えると期待できる.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (6 results)

All 2024 2022 2021

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Journal Article] Sparse-Sparse Matrix Multiplication Accelerator on FPGA featuring Distribute-Merge Product Dataflow2024

    • Author(s)
      Yuta Nagahara, Jiale Yan, Kazushi Kawamura, Masato Motomura, Thiem Van Chu
    • Journal Title

      Asia and South Pacific Design Automation Conference (ASP-DAC)

      Volume: 1 Pages: 785-791

    • DOI

      10.1109/asp-dac58780.2024.10473865

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Efficient COO to CSR Conversion for Accelerating Sparse Matrix Processing on FPGA2024

    • Author(s)
      Yuta Nagahara, Jiale Yan, Kazushi Kawamura, Masato Motomura, Thiem Van Chu
    • Journal Title

      International Conference on Consumer Electronics (ICCE)

      Volume: 1 Pages: 1-2

    • DOI

      10.1109/icce59016.2024.10444348

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Efficient Deadlock Avoidance for 2-D Mesh NoCs That Use OQ or VOQ Routers2024

    • Author(s)
      Philippos Papaphilippou, Thiem Van Chu
    • Journal Title

      IEEE Transactions on Computers

      Volume: 73 Issue: 5 Pages: 1414-1426

    • DOI

      10.1109/tc.2024.3365954

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] [記念講演]分散マージ乗算手法に基づく疎行列疎行列積アクセラレータ2024

    • Author(s)
      永原 雄大,Jiale Yan,川村 一志,本村 真人,Thiem Van Chu
    • Organizer
      VLSI設計技術研究会(VLD)
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 外部メモリアクセス抑制による高効率疎行列積アクセラレータの研究2022

    • Author(s)
      永原雄大,安藤洸太,川村一志,劉載勲,本村真人,Thiem Van Chu
    • Organizer
      電子情報通信学会技術研究報告CPSY2022-11, vol. 122, no. 133, pp. 59-64
    • Related Report
      2022 Research-status Report
  • [Presentation] A High-Performance and Flexible FPGA Inference Accelerator for Decision Forests Based on Prior Feature Space Partitioning2021

    • Author(s)
      Thiem Van Chu, Ryuichi Kitajima, Kazushi Kawamura, Jaehoon Yu, Masato Motomura
    • Organizer
      International Conference on Field-Programmable Technology (ICFPT)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi