• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Explainable Artificial Intelligence for Medical Applications

Research Project

Project/Area Number 21K17764
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionOsaka University

Principal Investigator

LI LIANGZHI  大阪大学, データビリティフロンティア機構, 特任助教(常勤) (10875545)

Project Period (FY) 2021-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2022: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
KeywordsExplainable AI / Computer Vision / Medical Images / Deep Learning / Image Classification / Visual Explanation / Computer-aided Diagnosis / Trustable AI / Medical Image
Outline of Research at the Start

To fully enable trustworthy AI for medicine and healthcare, this project aims to design an explainable AI model that can give diagnosis results along with precise visual explanations to support its decisions. Its success will serve as a strong benefit for medical professionals and students.

Outline of Final Research Achievements

To fully enable trustworthy AI for medicine and healthcare, this project aims to design an explainable AI model that can give diagnosis results along with precise and bifunctional visual explanations to support its decisions. In this project, I mainly studied the following sub-topics towards the goal: 1. A self-attention-based classifier that has the ability to conduct intrinsically-explainable inference; 2. A loss function for controlling the size of explanations. I design a dedicated loss named explanation loss, which is used to control the overall explanation size, region number, etc., of the visual explanations; 3. Collaborating sub-networks to output positive and negative explanations simultaneously.

The results are mainly presented in top conferences like IEEE ICCV and IEEE CVPR.

Academic Significance and Societal Importance of the Research Achievements

機械の判断に正確な理由を示すことができる技術の確立は、医療分野における説明可能なコンピュータ支援診断(CAD)や、病気の症状を認識する方法や手術を専門家のように実行する方法などのスキルを学生に教えるマシンティーチングシステム、また病気の形態/生理学的状態に関する患者の質問に答えるための医療ビジュアルクエスチョンアンサリング(VQA)など、様々な医療AIアプリケーションの向上につながります。さらに、この研究には一般的なAI研究の改善の可能性があります。

Report

(3 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • Research Products

    (4 results)

All 2023 2022 2021

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (2 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Automated grading system of retinal arterio-venous crossing patterns: A deep learning approach replicating ophthalmologist’s diagnostic process of arteriolosclerosis2023

    • Author(s)
      Li Liangzhi、Verma Manisha、Wang Bowen、Nakashima Yuta、Nagahara Hajime、Kawasaki Ryo
    • Journal Title

      PLOS Digital Health

      Volume: 2 Issue: 1 Pages: 174-174

    • DOI

      10.1371/journal.pdig.0000174

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Match them up: visually explainable few-shot image classification2022

    • Author(s)
      Wang Bowen、Li Liangzhi、Verma Manisha、Nakashima Yuta、Kawasaki Ryo、Nagahara Hajime
    • Journal Title

      Applied Intelligence

      Volume: - Issue: 9 Pages: 1-22

    • DOI

      10.1007/s10489-022-04072-4

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Presentation] Learning Bottleneck Concepts in Image Classification2023

    • Author(s)
      Bowen Wang, Liangzhi Li, Yuta Nakashima, Hajime Nagahara
    • Organizer
      IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) 2023
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition2021

    • Author(s)
      Liangzhi Li, Bowen Wang, Manisha Verma, Yuta Nakashima, Ryo Kawasaki, Hajime Nagahara
    • Organizer
      IEEE/CVF International Conference on Computer Vision (ICCV)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2021-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi