• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Temporal Knowledge Graph Construction from Text

Research Project

Project/Area Number 21K17816
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionJapan Advanced Institute of Science and Technology

Principal Investigator

Kertkeidkachorn Natthawut  北陸先端科学技術大学院大学, 先端科学技術研究科, 講師 (40818100)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2022: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2021: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
KeywordsTemporal Knowledge Graph / Financial KGs / Knowledge Representation / Relation Extraction / Knowledge Graph / Knowledge Acquisition / 金融 / Knowledge Extraction / Financial Report / Financial Application / Event Extraction
Outline of Research at the Start

Knowledge Graph plays a key role in various artificial intelligence applications. Generally, a knowledge graph is built to express static knowledge. Nevertheless, knowledge usually changes over time. A knowledge graph without considering the time does not satisfy the change. Therefore, this project aims to study a temporal knowledge graph and to develop a novel framework for constructing temporal knowledge graphs from text. The outcomes of this research will expand the study on the knowledge graph area and facilitate the time-aware knowledge graph-based applications.

Outline of Final Research Achievements

The project outcomes include both the research methods and the development of temporal knowledge graphs in the financial domain. Specifically, we proposed a knowledge extraction framework that uses both semantic and syntactic features to extract useful knowledge from text, ensuring high-quality knowledge graphs. We constructed FinKG and FinKG-JP, temporal knowledge graphs in the financial domain. Temporal information, including report details and stock prices, was extracted using our financial ontology template and encoded at the edges of the knowledge graphs. We demonstrated the usefulness of FinKG in two applications: knowledge retrieval and stock price prediction.

Academic Significance and Societal Importance of the Research Achievements

このプロジェクトでは、金融分野における時系列知識グラフであるFinKGとFinKG-JPの構築および開発方法を提案した。これらの時系列知識グラフは、金融分野における時間認識型AIアプリケーションの開発に貢献することができる。本研究の科学的意義は、時系列知識グラフの構築方法を進展させることであり、これは金融における予測分析や意思決定プロセスの向上に不可欠である。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (8 results)

All 2023 2022 Other

All Int'l Joint Research (1 results) Journal Article (4 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 3 results) Presentation (3 results) (of which Int'l Joint Research: 2 results)

  • [Int'l Joint Research] King Mongkut's Institute of Technology(タイ)

    • Related Report
      2023 Annual Research Report
  • [Journal Article] FinKG-JP: A Japanese Financial Knowledge Graph2023

    • Author(s)
      Natthawut Kertkeidkachorn, Rungsiman Nararatwong, Ziwei Xu, Ryutaro Ichise
    • Journal Title

      Proceedings of the Annual Conference of JSAI

      Volume: JSAI2023 Issue: 0 Pages: 1U4IS1a03-1U4IS1a03

    • DOI

      10.11517/pjsai.JSAI2023.0_1U4IS1a03

    • ISSN
      2758-7347
    • Related Report
      2023 Annual Research Report
  • [Journal Article] Modelling an RDF Knowledge Graph with Transitivity and Symmetry for Bus Route Path Finding2023

    • Author(s)
      Rathachai Chawuthai, Natthawut Kertkeidkachorn, Teeradaj Racharak
    • Journal Title

      Proceedings of the 6th Artificial Intelligence and Cloud Computing Conference

      Volume: - Pages: 1-8

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] FinKG: A Core Financial Knowledge Graph for Financial Analysis2023

    • Author(s)
      Kertkeidkachorn Natthawut、Nararatwong Rungsiman、Xu Ziwei、Ichise Ryutaro
    • Journal Title

      IEEE 17th International Conference on Semantic Computing (ICSC)

      Pages: 90-93

    • DOI

      10.1109/icsc56153.2023.00020

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Competent Triple Identification for Knowledge Graph Completion under the Open-World Assumption2022

    • Author(s)
      FARJANA Esrat、KERTKEIDKACHORN Natthawut、ICHISE Ryutaro
    • Journal Title

      IEICE Transactions on Information and Systems

      Volume: E105.D Issue: 3 Pages: 646-655

    • DOI

      10.1587/transinf.2021EDP7148

    • NAID

      130008165621

    • ISSN
      0916-8532, 1745-1361
    • Year and Date
      2022-03-01
    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] FinKG-JP: A Japanese Financial Knowledge Graph2023

    • Author(s)
      Natthawut Kertkeidkachorn
    • Organizer
      2023年度人工知能学会全国大会(第37回)
    • Related Report
      2023 Annual Research Report
  • [Presentation] Modelling an RDF Knowledge Graph with Transitivity and Symmetry for Bus Route Path Finding2023

    • Author(s)
      Rathachai Chawuthai
    • Organizer
      The 6th Artificial Intelligence and Cloud Computing Conference
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] FinKG: A Core Financial Knowledge Graph for Financial Analysis2023

    • Author(s)
      Natthawut Kertkeidkachorn
    • Organizer
      IEEE 17th International Conference on Semantic Computing
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi