• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Evolutionary Algorithms Using Pairwise Ranking Machine Learning Models for Expensive Optimization Problems

Research Project

Project/Area Number 21K17826
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61040:Soft computing-related
Research InstitutionSaitama University (2023)
Tokyo Metropolitan University (2021-2022)

Principal Investigator

Harada Tomohiro  埼玉大学, 理工学研究科, 准教授 (40755518)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2023: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords進化計算 / 機械学習 / 最適化 / サロゲート
Outline of Research at the Start

本研究では,進化的アルゴリズム(EA)に機械学習による最適化対象の特徴学習を組み込み,学習結果に基づく探索により計算時間を削減する方法を提案する.EAが解の優劣に基づいて最適化する点に着目し,EAの探索過程で生成される2つの解の優劣を判定する二値分類モデルを導入する.さらに,二値分類モデルの学習が不十分な領域を積極的に学習することで,判定精度を向上させる機構を考案する.提案手法の有効性を検証するために,実世界の工学設計最適化を対象に従来のEAと比較する計算機実験を行い,従来EAと比較して少ない探索回数で最適解を獲得できることを確認する.

Outline of Final Research Achievements

This research proposed a new binary classification surrogate model called ELDR for evolutionary algorithms (EAs). By applying the EA using ELDR to constrained and unconstrained optimization problems, this research demonstrated superior performance compared to existing methods, with particularly significant performance improvements for high-dimensional problems. This research applied ELDR to a real-world optimization problem and showed that it enables better designs with fewer evaluations than conventional methods. This research achieved a wide range of results, including the proposal of ELDR, the establishment and validation of the effectiveness of EAs using ELDR, and the application to real-world problems.

Academic Significance and Societal Importance of the Research Achievements

本研究は,進化的アルゴリズムによる効率的な解探索のために,少ないデータ数で高精度に評価値を推定可能な新しい二値分類型サロゲートモデルELDRを提案し,その有効性を検証した.実世界の多くの最適化問題は,解候補の評価にシミュレーションや複雑な数値計算を用いるため評価コストが高く,最適解の獲得までに莫大な計算時間を要する.本研究の研究成果によって,このような実世界の高コストな最適化問題に対して,従来より少ない評価回数で高品質な解を効率的に獲得できることが期待される.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (16 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (1 results) Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (13 results) (of which Int'l Joint Research: 6 results)

  • [Int'l Joint Research] University of Malaga(スペイン)

    • Related Report
      2023 Annual Research Report
  • [Journal Article] A pairwise ranking estimation model for surrogate-assisted evolutionary algorithms2023

    • Author(s)
      Harada Tomohiro
    • Journal Title

      Complex & Intelligent Systems

      Volume: 9 Issue: 6 Pages: 6875-6890

    • DOI

      10.1007/s40747-023-01113-4

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Investigating the influence of survival selection and fitness estimation method in genotype-based surrogate-assisted genetic programming2022

    • Author(s)
      Harada Tomohiro、Kino Sohei、Thawonmas Ruck
    • Journal Title

      Artificial Life and Robotics

      Volume: 28 Issue: 1 Pages: 181-191

    • DOI

      10.1007/s10015-022-00821-3

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Energy and Quality of Surrogate-Assisted Search Algorithms: a First Analysis2024

    • Author(s)
      Tomohiro Harada, Enrique Alba, Gabriel Luque
    • Organizer
      IEEE World Congress on Computational Intelligence (IEEE WCCI 2024)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Analysis of the Impact of Prediction Accuracy on Search Performance in Surrogate-assisted Evolutionary Algorithms2024

    • Author(s)
      Yuki Hanawa, Tomohiro Harada, Yukiya Miura
    • Organizer
      IEEE World Congress on Computational Intelligence (IEEE WCCI 2024)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Hybrid Rocket Engine Design Using Pairwise Ranking Surrogate-assisted Differential Evolution2023

    • Author(s)
      Hitomi Kano, Tomohiro Harada, Yukiya Miura, Masahiro Kanazaki
    • Organizer
      Companion Conference on Genetic and Evolutionary Computation (GECCO '23 Companion)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 高コスト制約付き最適化問題に対する制約ランキングサロゲートを用いる適応的差分進化2023

    • Author(s)
      狩野 仁深,原田 智広,三浦 幸也
    • Organizer
      進化計算シンポジウム2023
    • Related Report
      2023 Annual Research Report
  • [Presentation] サロゲート型進化計算におけるモデルの推定精度が探索性能に与える影響の分析2023

    • Author(s)
      塙 裕貴,原田 智広,三浦 幸也
    • Organizer
      進化計算シンポジウム2023
    • Related Report
      2023 Annual Research Report
  • [Presentation] 消炎再着火を考慮したハイブリッドロケット設計に対する優劣推定型サロゲート差分進化の適用2023

    • Author(s)
      狩野 仁深,原田 智広,三浦 幸也,金崎 雅博
    • Organizer
      日本航空宇宙学会 第54期年会講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Differential Evolution Using Surrogate Model Based on Pairwise Ranking Estimation for Constrained Optimization Problems2022

    • Author(s)
      Hitomi Kano, Tomohiro Harada, Yukiya Miura
    • Organizer
      Joint 12th International Conference on Soft Computing and Intelligent Systems and 23rd International Symposium on Advanced Intelligent Systems (SCIS&ISIS 2022)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 優劣推定型サロゲート差分進化を用いたハイブリッドロケット設計2022

    • Author(s)
      狩野 仁深,原田 智広,三浦 幸也,金崎 雅博
    • Organizer
      第38回ファジィシステムシンポジウム
    • Related Report
      2022 Research-status Report
  • [Presentation] Investigating the Effect of Survival Selection Policy in Surrogate-assisted Genetic Programming2022

    • Author(s)
      Sohei Kino, Tomohiro Harada, Ruck Thawonmas
    • Organizer
      27th International Symposium on Artificial Life and Robotics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 制約付き最適化問題に対する解の優劣推定に基づくサロゲートを用いた差分進化2022

    • Author(s)
      狩野 仁深,原田 智広,三浦 幸也
    • Organizer
      第21回進化計算学会研究会
    • Related Report
      2021 Research-status Report
  • [Presentation] ELMOEA/Dにおける代替評価モデル構築時の学習データ選択による探索性能への影響分析2022

    • Author(s)
      辻野 幸希,原田 智広,ターウォンマット ラック
    • Organizer
      第49回知能システムシンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] Adaptation of Search Generations in Extreme Learning Assisted MOEA/D Based on Estimation Accuracy of Surrogate Model2021

    • Author(s)
      Koki Tsujino, Tomohiro Harada, Ruck Thawonmas
    • Organizer
      IEEE Congress on Evolutionary Computation 2021 (CEC 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 解の優劣推定に基づくサロゲート型進化的アルゴリズム2021

    • Author(s)
      原田 智広
    • Organizer
      進化計算シンポジウム2021
    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi