Project/Area Number |
21K17998
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 80040:Quantum beam science-related
|
Research Institution | National Institutes for Quantum Science and Technology |
Principal Investigator |
Huang Kai 国立研究開発法人量子科学技術研究開発機構, 関西光科学研究所 光量子科学研究部, 主任研究員 (30866166)
|
Project Period (FY) |
2021-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2022: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | high power laser / electron accelerator / beam diagnostics / EO sampling / Longitudinal phase space / electron acceleration / longitudinal phase space / electro-optic sampling |
Outline of Research at the Start |
The longitudinal phase space (LPS) of an electron bunch, although important, has not been real-time characterized in laser wakefield acceleration due to the lack of single-shot diagnostics. Here, an “electro-optic streaking” technique is newly designed to solve this problem. Such a measurement will be the first time in the study of laser wakefield acceleration. The proposed research will have a wide impact to the studies of laser plasma acceleration and terahertz optics.
|
Outline of Final Research Achievements |
I proposed a brand new electro-optic streaking technique for the single-shot measurement of the electron longitudinal phase space (LPS) in laser wakefield acceleration. A “dog-leg” system composed of two dipole magnet was designed and manufactured. For easier access to the overall self-field information of the electron bunches, the measurement on the transition radiations (TR) from the electron bunches are planned. I have carried out a preliminary experiment to monitor the electron timings outside the plasma. The electron bunches were discovered to have a timing fluctuation of merely 7 fs (rms). This work was published as “K. Huang et al., Applied Physics Express 15, 036001 (2022)” and selected as the spotlight paper of the journal. For the theoretical aspect: I have developed a code covering all the sessions in the LPS. For the next step, I will insert the “dog-leg” into the experimental set-up and measure the LPS of the electron bunch.
|
Academic Significance and Societal Importance of the Research Achievements |
従来の加速器では、電子バンチのLPSは高周波 (RF) Transverse Deflection Structure (TDS)で測定される。しかし、レーザー駆動の粒子加速の場合、フェムト秒の時間スケールで電子バンチを時間的にキックすることが可能なTDSを構築することは困難である。本研究は、LWFAにおける電子ビームダイナミクスの先駆的な研究となる。EO技術の創造的な応用は、中赤外からTHzまでの波長範囲でのEO結晶の分散特性の研究にも有益である。
|