• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of integrable system using noncommutative algebraic geometry

Research Project

Project/Area Number 21K18575
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 11:Algebra, geometry, and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

Ueda Kazushi  東京大学, 大学院数理科学研究科, 准教授 (60432465)

Project Period (FY) 2021-07-09 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2022: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords非可換代数幾何学 / モジュライ空間 / ホモロジー的ミラー対称性 / 特異点 / 楕円種数
Outline of Research at the Start

代数幾何学と可積分系はともに長い歴史を持ち、それらの間には様々な関係が知られている。一方、非可換代数幾何学は、代数幾何学と可換環の関係を非可換環に拡張することによって、代数多様体の概念を量子化することを目指す、比較的新しい分野である。非可換代数多様体は集合ではなく圏であり、代数多様体の上の連接層のなすAbel圏や、その導来圏として得られる微分次数圏の一般化を与える。本研究では、非可換代数幾何学の可積分系への応用や、非可換代数多様体上の力学系の研究に取り組む。

Outline of Final Research Achievements

We defined a compact moduli space of marked noncommutative cubic surfaces as a geometric invariant theoretic compactification of the moduli space of relations of a quiver, and proved that it is an eight-dimensional toric variety containing the configuration space of six points in general position on the projective plane. We also proved homological mirror symmetry for wrapped Fukaya categories and Rabinowitz Fukaya categories of Milnor fibers of a class of Brieskorn-Pham singularities. We proved a conjecture of Seidel on the isomorphism of the Hochschild cohomologies of the Fukaya categories and and symplectic cohomologies for the same class of Brieskorn-Pham singularities along the way.

Academic Significance and Societal Importance of the Research Achievements

非可換射影平面と非可換2次曲面の概念はArtin-Tate-Van den BerghとVan den Berghによって1990年と2011年に出版された論文で確立されたが、我々の結果は非可換3次曲面やより一般の非可換del Pezzo曲面の概念を確立するものであり、今後の発展の基礎となる重要なものである。また、Milnorファイバーの巻深谷圏やRabinowitz深谷圏に対するホモロジー的ミラー対称性は、有限次元代数の表現論や団代数の理論など、数学の他の分野とも関係が深い。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (26 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (6 results) Journal Article (7 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 7 results,  Open Access: 3 results) Presentation (10 results) (of which Int'l Joint Research: 9 results,  Invited: 10 results) Remarks (3 results)

  • [Int'l Joint Research] The University of New South Wales(オーストラリア)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Imperial College London/Loughborough University(英国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Universidad Autonoma de Madrid(スペイン)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Imperial College London(英国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Imperial College London/Loughborough University(英国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of New South Wales(オーストラリア)

    • Related Report
      2021 Research-status Report
  • [Journal Article] On homological mirror symmetry for the complement of a smooth ample divisor in a K3 surface2024

    • Author(s)
      Lekili Yanki、Ueda Kazushi
    • Journal Title

      Kyoto Journal of Mathematics

      Volume: 64 Issue: 2 Pages: 557-564

    • DOI

      10.1215/21562261-2023-0023

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Dimer models and group actions2023

    • Author(s)
      Ishii Akira、Nolla Alvaro、Ueda Kazushi
    • Journal Title

      Mathematische Zeitschrift

      Volume: 306 Issue: 1 Pages: 1-24

    • DOI

      10.1007/s00209-023-03394-4

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The ring of modular forms of $\mathrm{O}(2,4;\mathbb{Z})$ with characters2022

    • Author(s)
      NAGANO Atsuhira、UEDA Kazushi
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: 51 Issue: 2 Pages: 275-286

    • DOI

      10.14492/hokmj/2020-355

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Homological mirror symmetry for Milnor fibers via moduli of A∞$A_\infty$‐structures2022

    • Author(s)
      Lekili Yank?、Ueda Kazushi
    • Journal Title

      Journal of Topology

      Volume: 15 Issue: 3 Pages: 1058-1106

    • DOI

      10.1112/topo.12248

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] The ring of modular forms for the even unimodular lattice of signature (2,18)2022

    • Author(s)
      Nagano Atsuhira、Ueda Kazushi
    • Journal Title

      Hiroshima Mathematical Journal

      Volume: 52 Issue: 1 Pages: 43-51

    • DOI

      10.32917/h2021012

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Homological mirror symmetry for Milnor fibers of simple singularities2021

    • Author(s)
      Lekili Yanki、Ueda Kazushi
    • Journal Title

      Algebraic Geometry

      Volume: 8 Pages: 562-586

    • DOI

      10.14231/ag-2021-017

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] The ring of modular forms for the even unimodular lattice of signature (2,10)2021

    • Author(s)
      Hashimoto Kenji、Ueda Kazushi
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 150 Issue: 02 Pages: 547-558

    • DOI

      10.1090/proc/15667

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] Moduli of Calabi-Yau manifolds as moduli of A-infinity structures2024

    • Author(s)
      Kazushi Ueda
    • Organizer
      Tsinghua-Tokyo workshop on Calabi-Yau
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Dimers, clusters, and mirrors2024

    • Author(s)
      Kazushi Ueda
    • Organizer
      Eastern Hemisphere Colloquium on Geometry and Physics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] ミラー対称性と退化2024

    • Author(s)
      植田一石
    • Organizer
      日本数学会年会特別講演
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Stable Fukaya categories of Milnor fibers2023

    • Author(s)
      Kazushi Ueda
    • Organizer
      Mirror Symmetry and Differential Equations
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Homological mirror symmetry for Milnor fibers of simple elliptic hypersurface singularities2023

    • Author(s)
      Kazushi Ueda
    • Organizer
      Workshop on Mirror symmetry and Related Topics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Homological mirror symmetry for maximally degenerate Calabi-Yau manifolds2023

    • Author(s)
      Kazushi Ueda
    • Organizer
      Workshop on Mirror symmetry and Related Topics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Homological mirror symmetry and elliptic fibrations2023

    • Author(s)
      Kazushi Ueda
    • Organizer
      QSMS workshop on symplectic geometry and related topics, Jeju, Korea
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stable Fukaya categories of Milnor fibers2023

    • Author(s)
      Kazushi Ueda
    • Organizer
      QSMS workshop on symplectic geometry and related topics, Jeju, Korea
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stable Fukaya categories of Milnor fibers2022

    • Author(s)
      Kazushi Ueda
    • Organizer
      Geometry of GLSMs, University of Birmingham, UK
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Noncommutative local Calabi-Yau 3-folds2022

    • Author(s)
      Kazushi Ueda
    • Organizer
      UNIST International Workshop on Geometry and Mathematical Physics 2022, Ulsan National Institute of Science and Technology
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks]

    • URL

      https://researchmap.jp/uedakazushi

    • Related Report
      2023 Annual Research Report
  • [Remarks]

    • URL

      https://www.ms.u-tokyo.ac.jp/~kazushi/

    • Related Report
      2022 Research-status Report
  • [Remarks]

    • URL

      https://www.ms.u-tokyo.ac.jp/~kazushi/

    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-07-13   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi