• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis of variational problems in topological geometry using Sobolev manifolds

Research Project

Project/Area Number 21K18583
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 12:Analysis, applied mathematics, and related fields
Research InstitutionSaitama University

Principal Investigator

Nagasawa Takeyuki  埼玉大学, 理工学研究科, 教授 (70202223)

Co-Investigator(Kenkyū-buntansha) 下川 航也  お茶の水女子大学, 基幹研究院, 教授 (60312633)
Project Period (FY) 2021-07-09 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2023: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2022: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords結び目のエネルギー / 絡み目のエネルギー / メビウス・エネルギー / メビウス不変 / ガウス写像 / 分解エネルギー / 調和写像 / 結び目 / 変分問題 / 絡み目 / エネルギー / Sobolev多様体
Outline of Research at the Start

関数空間を関数の位相的性質により分割するという発想は従来なかったものである。解析学と位相幾何学の研究者の共同作業により、位相幾何学における変分問題への新しい解析法を創出する。新手法により結び目エネルギーに関する未解決問題に取り組む。

Outline of Final Research Achievements

We study the Moebius energy for knots and kinks taking the topology of knot type and link type into consideration, The linking number of a link is the mapping degree of the Gauss map. Here, generalizing the definition of the Gauss map to knots, we investigate relations the Gauss map and the Moebius energy and its decomposition. As s result, we derive the direct expression using the Gauss map of the Moebius energy and its decomposed energies, and the indirect expression of the second decomposed energy. The decomposition can be interpreted as the parallelogram low for the energy from the indirect expression, The direct expression suggests relevance of the second decomposed energy to the wave map.

Academic Significance and Societal Importance of the Research Achievements

結び目や絡み目のエネルギーは、それらの標準型を与えるために考案されたものである。その中でメビウス変換により不変なエネルギーがメビウス・エネルギーである。この不変性は幾何学的には興味深いが、解析学的には最小化列のコンパクト性の喪失を意味に、解析が困難となる。そのために、エネルギー構造のより深い理解が必要となる。本研究により、位相不変量を与えるGauss写像との関連が明らかとなった。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (24 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (2 results) Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results) Presentation (14 results) (of which Int'l Joint Research: 3 results,  Invited: 9 results) Book (1 results) Remarks (4 results)

  • [Int'l Joint Research] Salzburg University(オーストリア)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Salzburg University(オーストリア)

    • Related Report
      2022 Research-status Report
  • [Journal Article] A Mobius invariant discretization of O’Hara’s Mobius energy2022

    • Author(s)
      Blatt Simon、Ishizeki Aya、Nagasawa Takeyuki
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 31 Issue: 03

    • DOI

      10.1142/s021821652250016x

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Upper and lower bounds and modulus of continuity of decomposed Mobius energies2021

    • Author(s)
      Aya Ishizeki, Takeyuki Nagasawa
    • Journal Title

      J. Geom. Anal.

      Volume: 31 Issue: 6 Pages: 5659-5686

    • DOI

      10.1007/s12220-020-00496-x

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Decomposition of generalized O'Hara's energies2021

    • Author(s)
      Aya Ishizeki, Takeyuki Nagasawa
    • Journal Title

      Math. Z.

      Volume: 298 Pages: 1049-1076

    • DOI

      10.1007/s00209-020-02601-w

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] A new formulation of the variational problem of the Mobius energy (注: Mobiusのoはウムラウト付き)2024

    • Author(s)
      Takeyuki Nagasawa
    • Organizer
      International Workshop - Regularity and Singularity for Geometric PDE and related Topics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The relevance of the Mobius energy to harmonic maps (注: Mobiusのoはウムラウト付き)2023

    • Author(s)
      Takeyuki Nagasawa
    • Organizer
      発展方程式とその周辺 -エネルギー構造と解の定量的解析-
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] メビウス・エネルギーと調和写像2023

    • Author(s)
      長澤 壯之
    • Organizer
      研究集会「多様体上の微分方程式」
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Mobiusエネルギーの分解と波動写像2023

    • Author(s)
      長澤 壯之
    • Organizer
      日本数学会2023年度年会函数方程式分科会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Decomposition of the O'Hara energy2023

    • Author(s)
      T. Nagasawa
    • Organizer
      "Energies of Knots, Residues of Manifolds and Related Topics"
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The Mobius energy for knots as a limit of that for links2023

    • Author(s)
      T. Nagasawa
    • Organizer
      Workshop Critical Exponent and Nonlinear Partial Differential Equations
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 結び目と絡み目に対するメビウス・エネルギーのメビウス不変分解について2022

    • Author(s)
      長澤 壯之
    • Organizer
      第64回早稲田双曲幾何幾何学的群論セミナー
    • Related Report
      2022 Research-status Report
  • [Presentation] 結び目と絡み目に対するエネルギーについて:分解定理、余弦公式とメビウス不変性2022

    • Author(s)
      長澤 壯之
    • Organizer
      RIMS共同研究(公開型)「偏微分方程式の臨界現象と正則性理論及び漸近解析」
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 結び目と絡み目に対するメビウス・エネルギーと波動写像2022

    • Author(s)
      長澤 壯之
    • Organizer
      九州関数方程式セミナー
    • Related Report
      2022 Research-status Report
  • [Presentation] 結び目と絡み目に対するメビウス・エネルギーと波動写像2022

    • Author(s)
      長澤 壯之
    • Organizer
      第37回さいたま数理解析セミナー
    • Related Report
      2022 Research-status Report
  • [Presentation] Mobius energy for knots and links, and wave maps2022

    • Author(s)
      A. Ishizeki, T. Nagasawa
    • Organizer
      The 13th MSJ-SI "Differential Geometry and Integrable Systems": The 5th International Workshop Geometry of Submanifolds and Integrable Systems
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The Mobius energies of knots and links: Decomposition, the cosine formula, and their Mobius invariance2022

    • Author(s)
      Takeyuki Nagasawa
    • Organizer
      The 13th Nagoya Workshop on Differential Equations
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 結び目と絡み目Mobiusエネルギー: 分解定理、余弦公式とMobius不変性2022

    • Author(s)
      石関 彩、長澤 壯之
    • Organizer
      日本数学会 2022年度年会 函数方程式分科会
    • Related Report
      2021 Research-status Report
  • [Presentation] 絡み目のMobiusエネルギーの極限としての結び目のMobiusエネルギー2022

    • Author(s)
      石関 彩、長澤 壯之
    • Organizer
      日本数学会 2022年度年会 函数方程式分科会
    • Related Report
      2021 Research-status Report
  • [Book] 結び目のエネルギー:入門と最近の話題2022

    • Author(s)
      長澤 壯之
    • Total Pages
      63
    • Publisher
      大学院レクチャーノートシリーズ
    • Related Report
      2022 Research-status Report
  • [Remarks] 科研費による研究成果

    • URL

      https://www.saitama-u.ac.jp/sci/math/lab/nagasawa/seika.html

    • Related Report
      2023 Annual Research Report
  • [Remarks] 長澤 壯之 科研費による研究成果

    • URL

      http://www.saitama-u.ac.jp/sci/math/lab/nagasawa/seika.html

    • Related Report
      2022 Research-status Report
  • [Remarks] 埼玉大学研究者総覧 長澤 壯之

    • URL

      http://s-read.saitama-u.ac.jp/researchers/pages/researcher/TeBukxhV

    • Related Report
      2022 Research-status Report
  • [Remarks] 科研費による研究成果

    • URL

      http://www.saitama-u.ac.jp/sci/math/lab/nagasawa/seika.html

    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-07-13   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi