Project/Area Number |
21K18610
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 13:Condensed matter physics and related fields
|
Research Institution | Tottori University (2022) National Institute of Advanced Industrial Science and Technology (2021) |
Principal Investigator |
Nada Hiroki 鳥取大学, 工学研究科, 教授 (90357682)
|
Project Period (FY) |
2021-07-09 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | 計算科学 / 拡張サンプリング法 / 分子シミュレーション / 結晶成長 / イオン液体 / 複雑液体 / 結晶化 / 構造探索 / メタダイナミクス / 計算物理 / 結晶相転移 / 物質探索 |
Outline of Research at the Start |
新しい半導体材料やセラミックス材料の探索は今や第一原理計算により作成したデータベースを活用するなど”計算機”で行う時代に入っているが、特殊な構造や機能を示す未知の相が多く潜んでいる高分子、ポリペプチド、液晶など複雑な分子やイオンの集合系に対しては、計算負荷が膨大になるためそのようなデータベースを作成できない。本研究では、メタダイナミクス法と呼ばれる計算科学手法の研究に取り組む。実験追求すら困難なイオン液体の遅い結晶化により出現する構造やその形成経路を明らかにし、この手法により複雑なイオンや分子の集合系に潜む未知の物質の理論探索が可能なことを実証する。
|
Outline of Final Research Achievements |
In order to develop a new computational method to search for unknown crystal phases and their formation mechanisms in systems consisted of complex molecules and/or ions, such as polymers, polypeptides, and chemical compounds, computer simulation studies using a molecular dynamics method in which a metadynamics method was implemented were performed. Simulations for ionic liquids, which are known to reveal high viscosity, using this method indicated crystal-like phases, which had different structures from known crystal phases, at high pressure regions of a free energy surface. Thus, we confirmed that this method is helpful to search for unknown crystal phases and their formation mechanisms theoretically.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の最大の意義は、これまでの材料開発のスタンスが大きく変わることにある。本方法を効果的に活用すれば、出現する相、その形成経路および形成条件まで先行予測できるため、試行錯誤を必要としないピンポイント実験でその相の存在を検証できる。このため、高効率な材料デザイン方法の創出につながる。本方法は、結晶相転移以外の現象、例えば液相中の液液相分離などの研究にも貢献できる。計算機性能が現在より向上すれば、タンパク質などの巨大分子集団系の研究などに対しても適用できるなど、広く波及する。
|