Project/Area Number |
21K18657
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 17:Earth and planetary science and related fields
|
Research Institution | Okayama University |
Principal Investigator |
|
Project Period (FY) |
2021-07-09 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2022: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2021: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
|
Keywords | 鉄同位体 / ゼーベック係数 / 酸化還元反応 / 核マントル境界 / 高圧実験 / 核ーマントル境界 |
Outline of Research at the Start |
鉄は太陽系の非揮発性元素の中でも最も豊富な元素であるが、地球のマントルの鉄同位体比はコンドライトより重い理由は謎のままである。本研究では、核―マントル境界(CMB)の上部に位置するマントル最下部は地球内部最大の熱境界層であることから、ゼーベック効果によりその境界で酸化還元反応が起き、核とマントル間で鉄の同位体分別が起きるという仮説を提唱する。高圧実験によって、ブリッジマナイトのゼーベック係数を測定し、境界で起こる反応が酸化反応であるか還元反応であるかを特定し、酸化還元反応によって鉄の同位体分別が起きるかを調査する。核―マントル境界においてマントルの重い鉄同位体比が形成可能か制約する。
|
Outline of Final Research Achievements |
Through this research project, many advances have been made in the development of thermoelectric measurements of mantle and nuclear materials under ultra-high pressure using a large-capacity multi-anvil press. It was confirmed that the redox reaction occurs in the electric field at the nuclear-mantle boundary expected by the Seebeck effect. The Seebeck coefficients of mantle minerals under high pressure have not been reported so far, but in this study, the Seebeck coefficients of olivine and wadsleyite, which are the most abundant minerals in the upper mantle minerals and the mantle transition zone, were successfully measured. These advances will lead to the determination of iron isotope fractionation by the Seebeck effect at the Earth's core-mantle boundary in the near future.
|
Academic Significance and Societal Importance of the Research Achievements |
地球の核マントル境界で安定であると期待されるブリッジマナイトの直流電場における酸化還元反応の実験、ゼーベック係数の測定に至らなかったため、鉄同位体分別に関する見識を得ることはできなかったが、高温高圧下の熱電測定に向けた技術は直実に進展した。このことは多くの電極を小さい高圧セルに組み込む非常に難しい実験の超高圧下での実現に期待を持たせる。一方で地球内部での温度差に起因したゼーベック効果の研究は皆無であるが、その効果に一石を投じることができた。高圧下における熱電特性の研究の進展は、熱変換デバイスの評価、電極反応の研究の促進にも応用することで社会実装可能なデバイス開発にもつながることが期待される。
|