Project/Area Number |
21K18665
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 18:Mechanics of materials, production engineering, design engineering, and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
Miura Hideo 東北大学, 工学研究科, 教授 (90361112)
|
Project Period (FY) |
2021-07-09 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2022: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2021: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | ひずみ / グラフェン / 分子吸着 / バイオセンサ / 界面制御 / 歪み |
Outline of Research at the Start |
本研究ではグラフェンナノリボン表面の歪み状態を制御することで,特定の分子の吸着あるいは脱離特性を可逆的に変化させる技術を確立する.またグラフェンナノリボン表面に特定の分子吸着を制御する機能性分子と表面保護皮膜をコーティングし,気体あるいは液体中に存在する当該分子の選択的検出を可能とする基本技術も構築する.これにより,マルチ分子選択センサ開発に向けた歪み制御多機能バイオセンサ開発の基盤技術の構築を図る.
|
Outline of Final Research Achievements |
The effect of substrate material and strain on the gas-molecule adsorption behavior of graphene was clarified quantitatively by applying the first principles calculation. It was found that the electronic band structure of graphene varied drastically from electron conduction type to hole conduction type as a strong function of the substrate material. In addition, the direct growth process of carbon nanotube on graphene was successfully developed. The grown CNT plays an important role as catalyst for improving the sensitivity of gas molecules. It was validated that the adsorption energy of NO2 gas molecule was improved under the application of uniaxial strain by 15 meV/1%-strain. These results clearly indicate the possibility of the development of multi-gas detecting sensor with high sensitivity and selectivity.
|
Academic Significance and Societal Importance of the Research Achievements |
CNT-グラフェンハイブリッドセンサはグラフェン単体センサより約6倍の感度向上と約5倍の脱離速度を有することを実証し,センサの高性能化に向けた設計指針を構築できた.またグラフェンの電気抵抗率変化の歪み依存性をシリコンデバイス比約1000倍にまで向上させることもでき,超高感度歪みセンサへの応用可能性も示した.本研究成果の独創性や工学的有用性などは国内外の学会賞の受賞などでも評価されている.これにより危険環境中の有害物質検出や,人体の体液や血液中の目標分子の存在や濃度を高感度で定量的に検出可能なマルチ分子選択センサ開発に向けた歪み制御多機能バイオセンサ開発の基盤技術の構築ができたものと考えている.
|