Creation and Mechanical-Structural Control of Topological Ferroelectrics by Porous Metamaterials
Project/Area Number |
21K18673
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 18:Mechanics of materials, production engineering, design engineering, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2021-07-09 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2022: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2021: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
|
Keywords | 多孔質メタマテリアル / 複合物理特性 / ナノ強誘電体 / Phase-Field法 / 第一原理計算 / 第一原理解析 |
Outline of Research at the Start |
多孔質メタマテリアル中の微視的な強誘電分極秩序とそのトポロジカル特性を評価する大規模解析方法と数値解析システムを構築する。これらを用いて主課題であるトポロジカル強誘電特性を解明する。同時に、付随して現れる巨大圧電性などの新機能を評価する。さらに、外力負荷解析を実施し、分極のトポロジカル特性と負荷ひずみの連動効果(複合物理特性)を解明する。メタマテリアル内部の応力場・静電ポテンシャル場の3次元空間分布を抽出・可視化し、これを基に内部での分極トポロジカル秩序形成機構を明らかにする。得られた知見を統合し、多孔質メタマテリアルのトポロジカル強誘電特性と機能の力学設計指針について検討する。
|
Outline of Final Research Achievements |
In this study, I focus on ferroelectric porous metamaterials and evaluate their microscopic ferroelectric polarization and external field response by first-principles calculations and phase-field method. We found that novel topological polarizations such as multiple vortices and spirals, which are completely different from linear polarizations in homogeneous materials, appear in the nanoporous metamaterials. We also found that the hysteresis response to electric field strongly depends on the microscopic structure of the nanoporous metamaterials, and showed that it can be designed by the microstructure of the nanoporous metamaterials. Furthermore, we have also evaluated porous metamaterials of magnetic materials and composite metamaterials of ferroelectrics and magnetic materials, and found that their functions strongly depend on their microstructures.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、多孔質メタマテリアルの微視的内部構造とひずみ分布によって位相幾何学的な強誘電性を創り出すことで、材料力学的観点に基づく全く新しい機能創成の可能性を開拓する点に学術的意義がある。特に、メタマテリアルは光学・音響分野にて主たる研究対象となっているが、本研究では電気-力学的機能を主とするトポロジカル強誘電性のメタマテリアルなる新たな概念を立ち上げる点に特徴がある。本成果により、均質材では達成し得なかったヒステリシス応答や巨大な圧電効果などの新規機能を付与することができ、ナノ機械デバイスや情報デバイスの超大容量化といった産業応用への寄与の観点で社会的意義がある。
|
Report
(3 results)
Research Products
(30 results)