Project/Area Number |
21K18721
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 21:Electrical and electronic engineering and related fields
|
Research Institution | Osaka University |
Principal Investigator |
Araki Teppei 大阪大学, 産業科学研究所, 准教授 (10749518)
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
|
Keywords | フレキシブルエレクトロニクス / 透明電極 / 金属ナノワイヤ / 有機デバイス |
Outline of Research at the Start |
近年のエレクトロニクスの発展に伴い、ウェアラブルデバイスが、医療、ヘルスケア、介護などで展開されつつある。なかでも、伸縮性と透明性を有する電極・配線材料は、計測プローブの存在感を消し去って、ストレスフリーな生体信号計測を実現可能にする。本研究では、金属ナノワイヤを用いて高性能な伸縮透明配線を創出するための研究を行う。さらに、デバイス応用も検討し、対象を傷つけず且つ対象物に溶け込むセンサを創出するための研究開発を行う。
|
Outline of Final Research Achievements |
In this study, we designed the nano-network structure from both micro and macro perspectives to maximize the wiring properties in stretchable transparent wiring using metallic nanowires. In addition, we applied the technology to transistors and circuits to elucidate the mechanism and establish the technology to improve the device properties. The constructed device was able to measure bioelectrical signals (EEG, cardiac, myoelectric, etc.) and ions related to bio-metabolites in a bio-safe and low-noise condition. Furthermore, the transparency of the device does not interfere with the measurement of pulse wave, blood flow, and blood oxygen saturation concentration using optical methods (photoplethysmography, Laser Doppler method, etc.). In the future, this device is expected to be applied as a multimodal biological signal measuring instrument for detecting diseases and stress.
|
Academic Significance and Societal Importance of the Research Achievements |
過去に、金属ナノワイヤ等を用いて伸縮透明配線や伸縮透明トランジスタを形成する報告例があった。しかし、伸長時でも特性が変わらない高性能な素子・回路を実現した例は稀であった。本研究を遂行したことにより、次の3点に関する新規知見を得た。(1)電気特性と光透明性をミクロに高めるナノネットワーク。(2)伸長下におけるマクロな破壊挙動と安定性化手法。(3)微細な伸縮透明配線および伸縮透明回路の実現手法。さらに、伸縮性・導電性・透明性等に優れる素子・回路を用いた生体センシング等を実施した。対象を傷つけず且つ対象物に溶け込むセンサにより、さりげなく健康・異常を検出するセンサ社会の実現に近づいた。
|