Project/Area Number |
21K18732
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 21:Electrical and electronic engineering and related fields
|
Research Institution | Kumamoto University |
Principal Investigator |
Yano Ken-ichi 熊本大学, 産業ナノマテリアル研究所, 教授 (70311230)
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2022: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2021: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
|
Keywords | ナノ秒パルス高電界 / 白血球 / 好中球 / 好中球細胞外トラップ / 生体応答 / 活性化 |
Outline of Research at the Start |
白血球の大多数は好中球と呼ばれるタイプであるが、これをナノ秒パルス高電界で刺激すると、細胞が活性化されて、抗菌作用を持つ成分が細胞内部から細胞外へと放出される。本研究では、ナノ秒パルス高電界による白血球活性化を効率よく行うための手段を確立することを目的とし、刺激の至適条件の確立と、白血球サンプルの連続刺激を可能とする装置の作製を行う。近年、献血は成分毎に分画されて用いられることが多いが、白血球は輸血等には使用されない。本研究により、クリーンな刺激であるナノ秒パルス高電界を用いて、白血球から有用物質を調製するための新手法を確立する。
|
Outline of Final Research Achievements |
White blood cells play a vital role in the defence of the human body from infection, and neutrophils are the most abundant type of white blood cells. Stimulation of neutrophils with nanosecond pulsed electric fields (nsPEFs) can induce neutrophil extracellular trap (NET) formation, which is extrusion of chromosomal DNA and various intracellular bioactive molecules and serves as a defence mechanism against infection. In this study, we analyzed the mechanism for the nsPEF-induced NET formation and identified the threshold of electric fields and the requirement of both calcium influx and electrical actions for NET induction. Because neutrophils and other types of white blood cells in donated blood are not effectively utilized, our results pave the way for the release of bioactive molecules from neutrophils in unused donated blood samples.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究ではナノ秒パルス高電界によるNET誘導にはカルシウム流入の誘発と電気的作用が同時に必要であること、ナノ秒パルス高電界による細胞死誘導とNET誘導では異なるメカニズムが働いていることを示し、ナノ秒パルス高電界の生体作用メカニズムについて新たな理解を得た。近年、献血は成分ごとに使われることが多いが、白血球は輸血にも製剤にも使われていない。本研究は、ナノ秒パルス高電界というクリーンな刺激により、好中球内部から生理活性物質を放出させ、これを有効利用することへ向けたさらなる研究開発の基盤となりうる。
|