Synthesis of novel carbon-rich transition metal carbides by ultra high-pressure synthesis using organometallic compound precursor
Project/Area Number |
21K18817
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 26:Materials engineering and related fields
|
Research Institution | Nagoya University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
佐々木 拓也 名古屋大学, 工学研究科, 助教 (70815787)
|
Project Period (FY) |
2021-07-09 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2022: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2021: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | 遷移金属炭化物 / 金属炭化物 |
Outline of Research at the Start |
遷移金属炭化物は様々な機能材料として期待されている.従来の遷移金属の炭化物は,その窒化物と同様に侵入型化合物として理解され,両者は類似物質群として捉えられてきた.近年,数十ギガパスカル以上で遷移金属二窒化物等の新多窒化物が多数発見され,同物質群の物質科学にパラダイム転換が起きている.そこで本研究では,有機金属化合物前駆体を用いた遷移金属炭化物超高圧合成手法を開発し,これまで発見されていない遷移金属二炭化物などの新奇化合物の創製に挑戦し,遷移金属炭化物の物質科学に新潮流を生み出す.
|
Outline of Final Research Achievements |
The decomposition of ferrocene Fe(C5H5)2, one of the cyclopentadienyl complexes, as a precursor, and subsequent reaction synthesis were carried out using a system combining a diamond anvil cell ultrahigh pressure generator and infrared laser heating. As a result, a new cubic phase was synthesised. This phase was found to be FeCxHy, in which hydrogen and carbon are solidly soluble in the fcc lattice of Fe. It was inferred that the hydrogen and carbon decompose into α-Fe, C and H2 by desorption from the lattice on depressurisation. Furthermore, it was concluded that the reason why the new cubic phase FeCxHy shows a larger volume modulus and lattice volume than the previously reported fcc-FeHx (x~1.0) is due to the solid solution of carbon as well as hydrogen in the Fe fcc lattice.
|
Academic Significance and Societal Importance of the Research Achievements |
数十GPa以上の超高圧領域における従来の物質科学研究では,これまで主に金属酸化物を対象にしており,超高圧下で金属炭化物の研究を開拓することは,金属多窒化物との比較研究と超高圧科学において飛躍的な発展が期待される.また,超高圧下で合成された物質は,ダイアモンドやZr3N4のように薄膜としても準安定的に合成される場合もあり,デバイス材料としての実用研究も始まっている.すでに薄膜化の努力が進められている金属多窒化物と同様に,金属炭化物の場合も特異な物理的・化学的物性を生かした電子材料,磁性材料,超硬質材料,電極材料,触媒材料などの新素材・新材料として期待され,新規産業の創出に貢献できる可能性もある.
|
Report
(3 results)
Research Products
(15 results)