Project/Area Number |
21K18821
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 26:Materials engineering and related fields
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
Kakimoto Ken-ichi 名古屋工業大学, 工学(系)研究科(研究院), 教授 (40335089)
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2022: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 環境発電 / 電子・電気材料 / 複合材料 / 焦電効果 / 圧電効果 / セラミックス |
Outline of Research at the Start |
環境振動や廃熱等の低品位エネルギーを使いやすいエネルギーに変換する研究は、脱炭素社会やSDGsの実現に寄与するもので、本研究では、セラミック材料がもつ優れた圧電性や焦電性に着眼した、新奇な有機・無機ハイブリッド材料を合成可能し、これまで捨てられてきた環境振動や廃熱をエネルギー変換するなど、卓越した工業的成果への発展も目論む研究を実施する。
|
Outline of Final Research Achievements |
Various new materials with both pyroelectric and piezoelectric properties have been synthesized. The internal potential was visualized, and the insulation resistance of the interface was evaluated when they were subjected to external dynamic strain. We also conducted various evaluation tests on the vibratory force/pyroelectric power generation and electric calorific effect to clarify the similarity of current-voltage output characteristics and the concerted mechanism. Furthermore, the environment in which vibration is applied also influences the above concerted phenomena, such as the shear deformation mode of the piezoelectric material working strongly in the pendulum-type vibration compared to the cantilever-type vibration, through actual measurements and simulations. We have succeeded in developing novel binary energy conversion materials that combine piezoelectric/pyroelectric effects and a cutting-edge precise evaluation technology.
|
Academic Significance and Societal Importance of the Research Achievements |
IoT社会を見据えた現在、電池不要化技術に関心が集まるが、出力源の偏在性や発生電力などに注目するあまり、基本となる電流と電圧の関係性についての科学的関心がいっそう希薄になってきた。そこで本研究では、環境発電に関して、電流と電圧の秩序ではなく、協奏に着眼し、温度差不要の熱発電と振動発電を同時に協奏させた新機軸のバイナリー創エネ材料の研究に挑戦した。材料工学以外にも特に機械工学的な観点から見たマルチタスク有限要素解析を進めることにより、受振特性と発電性能に優れる材料形状等の最適解も獲得したことで、扱い難い300℃以下の廃熱エネ変換など、卓越した工業的成果への発展が期待できる重要な知見を得た。
|