Project/Area Number |
21K18862
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 28:Nano/micro science and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
|
Project Period (FY) |
2021-07-09 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2022: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2021: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | 吸着 / グラフェン / ナノ多孔体 / ヒートポンプ / 多孔体 / 柔軟多孔体 / 気液相転移 / ナノスポンジ |
Outline of Research at the Start |
本研究の目的は、応力によりスポンジのように柔軟に変形するナノ多孔体を利用し、応力印加により細孔径を微小化させることで吸着を誘起する物理化学現象を世界で初めて達成することである。さらに、この原理に基づくヒートポンプの熱力学的モデルを構築し、エネルギー効率を最大化する材料設計や運転条件の試算を可能とする学理の構築を行う。
|
Outline of Final Research Achievements |
In this study, we have successfully accumulated fundamental data on vapor adsorption in flexible nanoporous materials such as carbon mesosponge (CMS). The investigation on the stress-induced steam adsorption indicated that materials with smaller pore sizes are more suitable. Thus, we examined the miniaturization of pore size through hot-pressing treatment of CMS and achieved the pore-size control over a wide range. Additionally, in order to expand the range of material exploration, we synthesized and investigated materials with varying numbers of graphene-stacking layers, as well as explored a different type of nanoporous material with single-graphene walls. Through this research, a deeper understanding of the relationship between the flexibility and adsorption behavior of nanoporous materials was obtained. This led to the emergence of new ideas for liquefying gas molecules using flexible nanoporous materials, and further investigations were conducted regarding this technology.
|
Academic Significance and Societal Importance of the Research Achievements |
単層グラフェンナノ多孔体であるカーボンメソスポンジ、グラフェンメソスポンジといった新素材の吸着挙動に関する基礎データの取得ができました。特にカーボンメソスポンジは有機蒸気を大量に吸着することができ、環境浄化や有機蒸気の回収への利用が期待できます。また、カーボン多孔体の微小な穴(細孔)の大きさを2~7 nmの範囲で自在に制御できる技術も開発しました。これらの成果は低環境負荷のヒートポンプ等の技術開発に繋がることが期待されます。
|