Development of plasmonic spectroscopy using nanostructured graphene
Project/Area Number |
21K18874
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 28:Nano/micro science and related fields
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
Ikeda Katsuyoshi 名古屋工業大学, 工学(系)研究科(研究院), 教授 (50321899)
|
Project Period (FY) |
2021-07-09 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2022: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2021: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | グラフェン / プラズモン共鳴 / 表面増強効果 |
Outline of Research at the Start |
ナノスケールの極小空間にて光を自在に操るナノフォトニクス分野において、赤外やテラヘルツ帯域が未踏領域として残されている。これは、ナノフォトニクスで利用している表面プラズモンの性質に由来する本質的な課題であり、金属ナノ構造を使う既存技術では解決が難しい。本研究では、2次元電子系であるグラフェンの表面プラズモンが、表裏2面が厚さゼロで強結合した特異なモードであることに着目し、赤外・テラヘルツ帯域で巨大な波長圧縮効果を発現する可能性について検証を行う。グラフェンへのドーピングとナノホールアレイ構造作成による共鳴波長の制御技術を確立し、可視から赤外・テラヘルツ領域にまたがるナノ集光技術を実現する。
|
Outline of Final Research Achievements |
In situ spectroscopic observation of electrochemical reactions on a carbon electrode should provide deep insights into reaction mechanisms at the molecular level. In this study, development of surface-enhanced spectroscopy using a nanostructured graphene was attempted in both visible and infrared regions. While plasmonic surface enhancement expected was not experimentally obtained in the infrared region, we found that enormous signal enhancement of Raman scattering in the visible region was induced by electrochemical potential application. This phenomenon was observed only when the graphene film contained atomistic defects. In addition, we developed a novel structure of cathodic electrodes based on the two-dimensional structure of graphene.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、挑戦的研究課題らしく、研究の過程で予想を超えた成果を得ることが出来た。高感度な界面分光法としてこれまで用いられてきた表面増強ラマン散乱は、金属ナノ構造のプラズモン共鳴を利用しているため、耐久性が低いという実用面の問題があった。今回見出した表面増強効果は、グラフェンとAu基板界面で起こっていると考えられ、長期安定性を持つ現象であることが実験的に確認された。本成果はこれまで知られていない現象であると考えられ、基礎学術的にもその機構解明は興味が持たれ、実用的にも従来技術の課題を解決する新分光技術への展開が期待される。
|
Report
(3 results)
Research Products
(13 results)