Quantum/Classical hybrid simulations of multielectron dynamics in intense laser fields
Project/Area Number |
21K18903
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 30:Applied physics and engineering and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Sato Takeshi 東京大学, 大学院工学系研究科(工学部), 准教授 (30507091)
|
Project Period (FY) |
2021-07-09 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2022: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 量子コンピューター / 量子ダイナミクス / 時間依存結合クラスター法 / 量子コンピュータ / 電子ダイナミクス / 時間依存ユニタリ結合クラスター |
Outline of Research at the Start |
時間に依存しない量子化学がNISQ量子コンピュータのキラーアプリケーションであるという認識は広く共有されているが、量子コンピュー タの時間依存量子系への適用は簡単なモデル系に留まっている。これに対し本研究は、量子コンピュータ実機を用いて、現実世界の現象である高次高調波発生のシミュレーションを行う。具体的には、申請者が開発してきた時間依存多電子理論に量子コンピュータ上の波動関数表現として有望視されているユニタリ結合クラスター法を組み込み、多体量子情報を量子コンピュータで、一体量子情報を古典コンピュータで計算するハイブリッドアルゴリズムを開発する。
|
Outline of Final Research Achievements |
In the light-matter interaction, the photon energy is first absorbed by electrons, which is then followed by various photoreactions through the energy transfer from electrons to nuclei. Attosecond science, which is based on the 2018 Nobel Prize-winning laser technology, is targeting the direct observation and control of such electron dynamics. Achieving this world-changing goal requires reliable calculation methods of intense laser-driven multielectron dynamics, which, however, suffers from the problem of combinatorial explosion peculiar to quantum many-body systems. In this work we developed a novel quantum computer/classical computer hybrid algorithm to simulate intense-laser driven multielectron dynamics called time-dependent unitary coupled-cluster method.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では多体量子情報は量子コンピュータで、一体量子情報は古典コンピュータで扱う時間依存量子・古典ハイブリッド計算を実現した。これはNISQ量子コンピュータを現実的かつトリビアルでない問題に適用するための鍵となる。長期的展望として、本研究成果によってアト秒科学の最終目標である電子運動の直接観測・直接制御が達成されれば、例えば、円偏光高次高調波スペクトロスコピーによるキラル分子の識別等が期待でき、生命科学、化学産業、製薬産業にまで革新的なインパクトを与えると予想される。
|
Report
(3 results)
Research Products
(26 results)