Development of Gaussian-type function based projector-augmented waves method
Project/Area Number |
21K18931
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 32:Physical chemistry, functional solid state chemistry, and related fields
|
Research Institution | Nagoya University |
Principal Investigator |
Takeshi Yanai 名古屋大学, 理学研究科(WPI), 教授 (00462200)
|
Project Period (FY) |
2021-07-09 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2022: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2021: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | 密度汎関数理論 / 射影増強波法 / 擬ポテンシャル / 基底関数 / ガウス型関数 / 解析的エネルギー微分 |
Outline of Research at the Start |
我々は,最近射影増強波法(PAW) と呼ばれる擬ポテンシャル法の数値安定性・効率性に着目し,それを量子化学計算法のガウス型基底 に組み入れる試みを提案している。ガウス型基底とPAWの組み合わせるこの枠組みを「GTF-PAW法」と以降呼ぶ。本研究では,GTF-PAW法を活用した,現実的な量子化学計算を実現する革新的な高速・高精度DFTソルバーの開発が行われる。DFT計算ソルバーの心臓部である数値計算アルゴリズムを置き換える新しい高速・高精度計算システムの確立を目指す。
|
Outline of Final Research Achievements |
We proposed a scheme to incorporate the PAW method into the conventional quantum chemical DFT implementation based on Gauss-type function (GTF) basis. The potentially high usability of the GTF-based PAW method, referred to as GTF-PAW, was previously shown, while its implementation was limited to the local density approximation (LDA). The GTF-PAW-based formulation and implementation to raise the level of the functional treatment to the generalized gradient approximation (GGA) was developed. In addition, we introduced the uniform mesh grid for DFT’s quadrature in place of the conventional Becke grid. With the test calculations performed on illustrative molecules, it is confirmed that the conventional approach to implement GGA within GTF basis code can be straightforwardly integrated into the GTF-PAW method, allowing for the numerically stable treatment of the gradients of density.
|
Academic Significance and Societal Importance of the Research Achievements |
今計算法は,従来型の全電子の計算を高い精度で再現できる基盤的な手法ありながら,一方で,数値計算の面で優位性をもつ。Gauss型関数としては,高指数を持つ基底を取り除いた圧倒的にコンパクトな基底系を利用しても,遜色のない精度を得ることができる。Meshグリッドを用いた計算を達成し,その結果がBeckeグリッドを用いた従来型と遜色のない,あるいは,潜在的には優位性を示すような結果を得る。本基底関数が全電子基底の結果を高精度に再現することができることを示すことに成功した。
|
Report
(3 results)
Research Products
(28 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Journal Article] Impact of Hydrophobic/Hydrophilic Balance on Aggregation Pathways, Morphologies, and Excited-state Dynamics of Amphiphilic Diketopyrrolopyrrole Dyes in Aqueous Media2022
Author(s)
Natsumi Fukaya, Soichiro Ogi, Hikaru Sotome, Kazuhiro Fujimoto, Takeshi Yanai, Nils Baumer, Gustavo Fernandez, Hiroshi Miyasaka, Shigehiro Yamaguchi
-
Journal Title
J. Am. Chem. Soc.
Volume: 144
Issue: 49
Pages: 22479-22492
DOI
Related Report
Peer Reviewed
-
-
-
-
-
-
-
-
-
-