Project/Area Number |
21K18932
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 32:Physical chemistry, functional solid state chemistry, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2023: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2022: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 光電荷分離 / 酸化チタン / 貴金属 / 界面 / エネルギー変換 / 色素増感太陽電池 / コロール |
Outline of Research at the Start |
太陽電池や光触媒において高いエネルギー変換効率を実現するためには高い光電荷分離効率が必須である。貴金属ナノ微粒子を用いたプラズモンエネルギー変換はそのための有望な手法の一つではあるが、増強効果に限界があることが知られている。そこで本研究では、貴金属元素を含む色素と半導体が融合した異種界面での光電荷分離に着目する。申請者はごく最近金原子を含む色素分子が複数の吸着基を介して半導体表面に固定化され、金原子と半導体の直接相互作用を通して超高速の電荷分離が起こることを見出している。この1原子レベルの直接相互作用に基づく超高速電荷分離機構を明らかにし、高効率なエネルギー変換への展開を目指す。
|
Outline of Final Research Achievements |
In solar cells and photocatalysts, a high photoinduced charge separation efficiency is essential to achieve high power conversion efficiency. Plasmon energy conversion using precious metal nanoparticles is one promising method for this, but there is a limit to the enhancement effect. Therefore, this study focused on photoinduced charge separation at the heterogeneous hybrid interface of a dye containing precious metal elements and a semiconductor. We found that a dye molecule containing gold atoms is immobilized on the surface of titanium oxide through multiple carboxyl groups, and ultrafast charge separation occurs through direct interaction between the gold atom and titanium oxide. By introducing a donor moiety into this system, we were successful in improving the power conversion efficiency.
|
Academic Significance and Societal Importance of the Research Achievements |
色素増感太陽電池では、増感色素の分子設計がエネルギー変換効率を決める重要な因子である。今回、半導体界面での光電荷分離を向上させるために、半導体表面に平行に平面状の増感色素が配向・吸着しても、さらにその上に電子ドナー部位を付加することでエネルギー変換効率を向上できることを学術的に明らかにした。本研究成果は将来的に半導体/増感色素界面材料を光エネルギー変換に利用するための重要な足掛かりになり得る。
|