Project/Area Number |
21K18972
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 34:Inorganic/coordination chemistry, analytical chemistry, and related fields
|
Research Institution | Yamagata University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
石崎 学 山形大学, 理学部, 講師 (60610334)
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2022: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | ナノ粒子 / 水和エネルギー / 発電 / プルシアンブルー / 薄膜 / 配位高分子 / 水和 / イオニクス / ゼータ電位 / カーボンナノチューブ / 塩水発電 |
Outline of Research at the Start |
電気二重層(EDL)発電は、自然/人工的な物質表面の電位を介して、水の移動エネルギーを電気エネルギーに変換する。本研究では、これに加え、電解質水溶液に潜在する水和エネルギーを外部に取り出す発電機構を探索する。発電層では、電子/ホール移動を制御する疑似半導体であるPB・PBAを使い、従来、EDL発電では考慮されていなかった付加価値の高い発電機構を見出すため、電子/ホールを選択的に取り込む電極構造と仕事関数に着目することで起電力増強効果の発現に繋げていく。表面電荷を有するPB・PBAナノ粒子からなる発電層の緻密薄膜から多孔質膜まで多様な構造制御により、電流量と起電力のバランスについて調査する。
|
Outline of Final Research Achievements |
This study has focused on ‘Salinity Gradient Energy (SGE)’, derived from the hydration energies of Na+. The SGE power generation has been explored using a pseudo-single-crystalline thin film (PSF) prepared by spin-coated Prussian-blue (PB) nanoparticles on a glass substrate. An SGE cell comprises top-bottom carbon-paste electrodes on the PSF. When the bottom side is immersed in a NaCl aqueous solution, generated voltages are significantly larger than that in water without NaCl. This phenomenon is driven by the semiconductor character of d-π bonding frameworks and oxidation-state change between Fe(II) and Fe(III). In a plausible mechanism, different hydration-number Na+ appears in lattice spaces and interfaces between PB nanoparticles. The gradient in the Na+ distribution is a driving force to generate voltages. The distribution of the low-hydration-number Na+ in the top side of the PSCF can induce Fe(II) states, and vice versa in the bottom side.
|
Academic Significance and Societal Importance of the Research Achievements |
格子内や粒子界面に分布するNa+の水和状態がPB骨格の電子状態に敏感に影響を与え、それを電圧として取り出せる新しい機構が見出された。PBナノ粒子が緻密に連結された疑似単結晶膜は、PB相が両極間の空乏層として存在する薄膜電池素子として機能した。一方で、出力する電流量が極めて少ない課題が残った。電流量を増大させるには、新しい戦略に基づく素子設計が必要である。例えば、孤立したPBナノ粒子の表面効果=塩水への接触面積の増大とそのPBナノ粒子個々の電気伝導経路を確保できる革新的な電極構造が構築できれば、「水和状態の変化を大きな電気エネルギーとして安定して変換」できる実質的な機能に導けると期待される。
|