Project/Area Number |
21K18989
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 34:Inorganic/coordination chemistry, analytical chemistry, and related fields
|
Research Institution | Tokyo Metropolitan University (2023) Meiji University (2021-2022) |
Principal Investigator |
Okazaki Takuya 東京都立大学, 都市環境科学研究科, 特任准教授 (60772556)
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2022: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2021: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
|
Keywords | 水熱反応 / in situ / 反射光 / 光ファイバー / 画像解析 / 光ファイバープローブ / 水熱電気化学 / 水熱合成 / リアルタイム計測 / 反射吸光測定 / SrTiO3:Rh / アレニウスプロット / NaTaO3 / 光ファイバーセンサー / 表面プラズモン共鳴 / 水熱合成反応 / 光触媒 |
Outline of Research at the Start |
水熱合成法は,高圧高温の水を利用する無機材料合成法の一つである。一方,圧力容器内で起こる反応の進行は,時間ごとの回収・分析という労力の上で確認されるため,最適時間の迅速な決定や,速度論的な議論は難しい。本研究の目的は,表面プラズモン共鳴(SPR)光ファイバーセンサーによって,圧力容器内での無機材料の水熱合成過程をリアルタイムで観測する技術を開発することである。
|
Outline of Final Research Achievements |
Synthesis of inorganic materials using hydrothermal reactions is conducted in a closed vessel under high temperature and high pressure, making it difficult to obtain information on the reaction process. In this study, we developed a real-time evaluation technique of the hydrothermal reaction process by spectroscopic method using an autoclave with a light-transmitting window. SrTiO3:Rh, a visible light responsive photocatalyst, was selected as the target material, and the change in light absorption behavior during the reaction was observed. Two spectroscopic techniques were used: reflected light measurement using an optical fiber probe and image analysis. Each method allowed us to measure the changes in the proposed response continuously. Reaction kinetics analysis was achieved from the changes in response obtained from the measurements.
|
Academic Significance and Societal Importance of the Research Achievements |
水熱反応による材料合成は,容易な粒子制御や低エネルギー消費などの利点から研究・産業目的で広く実用されている。目的の水熱合成において,反応過程に関する知見を得ることは反応メカニズムの理解や目的の材料特性を得る上で重要である。一方,水熱反応は高温高圧の密閉容器で進行するため,内部の情報を得ることは難しい。本研究では光ファイバー型のプローブや写真撮影に基づく画像処理によって反応過程の連続的な観測に成功した。これらは高額または大規模な装置を用いず,容易かつ迅速に利用できる。
|