• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A universal platform to control the spatiotemporal concentration of biomolecules using non-fluorescent dyes

Research Project

Project/Area Number 21K19044
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 37:Biomolecular chemistry and related fields
Research InstitutionKanazawa University

Principal Investigator

Arai Satoshi  金沢大学, ナノ生命科学研究所, 准教授 (70454056)

Co-Investigator(Kenkyū-buntansha) CLEMENS・MARTIN FRANZ  金沢大学, ナノ生命科学研究所, 准教授 (50837664)
Project Period (FY) 2021-07-09 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2022: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2021: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Keywords蛍光温度センサー / リポソーム / 無輻射失活 / 光ケージド / 光熱変換 / 蛍光センサー / 生体分子 / 光ケージド化合物
Outline of Research at the Start

シグナル分子やエネルギー代謝産物などの濃度を、1細胞レベルで制御する方法論の確立は、細胞の特定の機能を正確に理解するために欠かせない。本課題では、従来の光ケージド化による手法の抱える化合物多様性の低さや細胞毒性の問題を解決するため、近赤外線レーザーに応答するナノ粒子を用いた、万能型の生体分子の濃度制御システムを、AFMを用いたナノ粒子の作動原理の解明を含め提案する。

Outline of Final Research Achievements

In this grant proposal, we focused on the temperature-sensitive lipid membranes that undergo a phase transition at a certain threshold temperature, and designed lipid nanoparticles where a photothermal dye was embedded in the membrane. We expected that very local heat generated by light irradiation directly affects the lipid bilayer membrane efficiently, causing a phase transition and releasing a biomolecule encapsulated in the liposomes. As expected, the encapsulated biomolecules could be released upon the light illumination. Furthermore, we found that the temperature increment nearby the liposomal membrane was scarce because the local heat was efficiently consumed in the phase transition. It should also be noted that relatively large molecules could be encapsulated and released by the light illumination. Our proposed system is assumed to be applied as a new tool for optical control of the spatiotemporal dynamics of concentrations of various biomolecules.

Academic Significance and Societal Importance of the Research Achievements

細胞内外の生体分子の局所濃度を自在に操作できる技術は、ダイナミックな細胞機能を理解するための基礎生物学分野での研究ツールとして活用が期待できる。また、生体組織に親和性の高い近赤外レーザーを用いることから、薬剤を封入した粒子を調製し、光刺激を用いる新規なドラッグデリバリーシステムへも展開可能である。特に、従来の類似技術である光ケージド化合物を用いた方法と比べて、適用できる化合物の多様性(多くの水溶性の化合物を内包できる)、時空間分解能などの点で優位であるのも特徴である。

Report

(1 results)
  • 2022 Final Research Report ( PDF )

URL: 

Published: 2021-07-13   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi