• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of robotic sedation system

Research Project

Project/Area Number 21K19588
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 57:Oral science and related fields
Research InstitutionTohoku University

Principal Investigator

Mizuta Kentaro  東北大学, 歯学研究科, 教授 (40455796)

Co-Investigator(Kenkyū-buntansha) 大町 真一郎  東北大学, 工学研究科, 教授 (30250856)
宮崎 智  東北大学, 工学研究科, 助教 (10755101)
飯島 毅彦  昭和大学, 歯学部, 客員教授 (10193129)
星島 宏  東北大学, 歯学研究科, 准教授 (90536781)
Project Period (FY) 2021-07-09 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Keywordsセデーション / 人工知能
Outline of Research at the Start

医療現場における鎮静法の利用件数は増加の一途を辿っており、歯科治療、消化管内視鏡検査、MRI検査などの際に利用されている。しかし、麻酔科医のマンパワーは世界的に不足しており、鎮静の大多数が麻酔管理に不慣れな非麻酔科医により実施されている。そこで本研究では、麻酔科医が経験則で行っている鎮静深度の調節を、分析力と予測力を兼ね備えた人工知能に置き換え、患者の特性、鎮静中の呼吸状態、患者の鎮静深度に合わせて鎮静薬の投与速度を自動制御するロボット鎮静システムを開発するものである。

Outline of Final Research Achievements

We have developed an artificial intelligence-assisted sedation system that uses deep learning of patient data and sedative drug doses over time, together with teacher data, to automatically control sedative drug doses and timing of administration according to patient characteristics. Specifically, by combining two machine learning models (sedative drug dose estimation model and sedative depth estimation model), we developed a recursive algorithm in which the artificial intelligence automatically predicts and controls the sedative drug dose according to the patient's sedation depth and a closed-loop, fully automatic sedation system that automatically controls the sedative drug administration rate. The results confirmed that future prediction of sedative drug dosage was achieved with high accuracy.

Academic Significance and Societal Importance of the Research Achievements

医療現場における鎮静法(セデーション)の利用件数は増加の一途を辿っており、歯科治療、消化管内視鏡検査、MRI検査、CT検査、小手術時に広く利用されている。これまで麻酔科医が「経験則」で行ってきた鎮静深度の調節作業を、「分析力」と「予測力」を兼ね備えた人工知能に置き換えることで、鎮静システム全体を自動化できることが期待される。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (5 results)

All 2023 Other

All Int'l Joint Research (1 results) Presentation (4 results) (of which Int'l Joint Research: 3 results,  Invited: 3 results)

  • [Int'l Joint Research] コロンビア大学(米国)

    • Related Report
      2023 Annual Research Report
  • [Presentation] Current Perspectives of AI in Dental AnesthesiologyHype, Hope, and Hurdles2023

    • Author(s)
      Kentaro Mizuta
    • Organizer
      37th IADR-SEA
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Computer-Assisted Anesthesia in Dentistry2023

    • Author(s)
      Kentaro Mizuta
    • Organizer
      National Yang Ming Chiao Tung University Meeting 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Current perspectives on analgesia during procedural sedation2023

    • Author(s)
      Kentaro Mizuta
    • Organizer
      FADAS meeting 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 人工知能を応用した術後悪心嘔吐のリスク因子の同定2023

    • Author(s)
      星島宏、水田健太郎
    • Organizer
      第50回日本歯科麻酔学会学術集会
    • Related Report
      2022 Research-status Report

URL: 

Published: 2021-07-13   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi