Numerical study of Navier-Stokes turbulence in the whole space
Project/Area Number |
21K20322
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0201:Algebra, geometry, analysis, applied mathematics,and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
Ohkitani Koji 京都大学, 数理解析研究所, 教授 (70211787)
|
Project Period (FY) |
2021-08-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 乱流 / 周期境界条件 / 全空間 / 渦の融合 / 対流項の役割 / 自己相似解 / 渦融合 / 亜粘性散逸項 / Navier-Stokes方程式 / 流体乱流 / 直接数値計算 |
Outline of Research at the Start |
本研究の目的は、全空間におけるNavier-Stokes乱流の性質を、数値解析的手法で調べ周期境界条件下の結果と直接的に対比することである。 境界を持たない流れの基礎研究に関して、これまで数多くの数値解析的研究がなされてきたが、そのほとんどは、周期境界条件下によるものである。他方、R3 と T3 の場合の数学解析的研究では、それらの評価式が若干異なる。ここでは、2次元流、及び、3次元流について物理的、数学的に興味がある問題を取り上げ、直接数値計算により境界条件による相違を吟味する。
|
Outline of Final Research Achievements |
After developing numerical codes for solving fluid dynamical equations on the whole space, we have carried out the following research. We simulate merging of like-signed vortices to compare it with that under periodic boundaries. It is found that decay takes place faster on the periodic domain than the whole plane. We also simulate merging of three localized vortices that generates finer spatial structure in order to study the decay law of the total enstrophy and spatial patterns in vorticity. We examined the power-law of the energy spectrum on R2 comparing them with the predictions of phenomenological models, including E(k)~k**(-11/3). For 3D flow we solved fluid equation on the whole space to study reconnection of vortex rings. We are checking if the energy spectrum allows a power-law behaviour E(k)~k**(-8/3), characteristic to finite energy turbulence. We also studied self-similar profiles for the 3D Navier-Stokes and hypoviscous Burgers equations.
|
Academic Significance and Societal Importance of the Research Achievements |
これまで、多くの数値計算は周期境界条件の下で行われて来ていて、全空間での流れと定性的に同様であると考えられてきた。今回、両者の計算を詳しく比較することで、その差異を明らかにすることが出来た。特に、周期境界条件における周期鏡像列の存在が、流れの減衰早めることを明らかにした。この事は、流体力学方程式の理論解析においても、有用な知見となり新たな手法を生み出すきっかけになると期待する。また、3次元ナビエ-ストークス方程式の(非線型)自己相似プロファイルを決定したのは、世界で初めてである。このプロファイルに現われる非線型性の痕跡を詳細に研究することで、同方程式に関する理解を深める事が可能である。
|
Report
(3 results)
Research Products
(10 results)