Project/Area Number |
21K20356
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0202:Condensed matter physics, plasma science, nuclear engineering, earth resources engineering, energy engineering, and related fields
|
Research Institution | Keio University |
Principal Investigator |
Funato Takumi 慶應義塾大学, グローバルリサーチインスティテュート(矢上), 特任助教 (10908700)
|
Project Period (FY) |
2021-08-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | スピン流 / 格子歪み / 表面弾性波 / ナノチューブ / スピン起電力 / スピン・回転結合 / スピントロニクス / スピンダイナミクス |
Outline of Research at the Start |
本研究では、物体の静的な歪みとスピンの結合を利用したスピン流生成機構について微視的な解析を行う。スピントロニクスにおける中心概念の一つであるスピン流の生成には、強磁性体やスピン軌道相互作用(SOI)の強い重金属など限られた物質が用いられてきた。一方、SOIの弱い常磁性金属はスピン流の長距離伝搬が可能であるなどデバイス応用上の優位性を持つ。本研究は物質に依存しない普遍的な相互作用を利用したスピン流生成手法の開拓を目指す。
|
Outline of Final Research Achievements |
In this research, we theoretically study the spin-related phenomena through dynamical lattice deformation. Remarkably, we derived a mechanism for converting magnetization into electromotive force due to a surface acoustic wave in a single ferromagnetic layer. The present mechanism can be realized in a simple layer without both precious metals and complicated device structure. Our finding opens the door for innovative applications using surface acoustic waves. Based on these findings, we investigated the spin-orbit interaction induced by the curvature in nanotube systems. As a result, we successfully reproduced the curvature-dependent spin-orbit interaction in carbon nanotubes and discovered the valley-dependent spin splitting in silicon nanotubes.
|
Academic Significance and Societal Importance of the Research Achievements |
電子の磁気的性質の流れであるスピン流は、電子デバイスの省エネルギー化や高機能化に革新をもたらすと期待されている。しかし、従来のスピン流生成は、電子スピンと電子の軌道運動が強く結合する貴金属が必須であった。本研究成果は、ナノチューブなど物質の格子(構造)の変形が電子スピンと軌道運動の結合を生み出すことを提供するものである。これはカーボンやシリコンなどの貴金属を必要としない新たなスピンデバイスへの可能性に繋がる。
|