Project/Area Number |
21K20499
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0402:Nano/micro science, applied condensed matter physics, applied physics and engineering, and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Mouterde Timothee 東京大学, 大学院工学系研究科(工学部), 講師 (40912530)
|
Project Period (FY) |
2021-08-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | nanofluidics / 2D materials / graphene / flow / fluid mechanics / 2D channels / fluids / surface charge / boron nitride / water transport / microfluidics / nanoscale |
Outline of Research at the Start |
Surface charge of confining materials rules nanoscale transport of water and ions. The objective of this project is to explore experimentally how the surface charge of graphene and hexagonal boron nitride is affected by surface defects and confinement.
|
Outline of Final Research Achievements |
The objective of this research project is to make 2D material based nanochannels to investigate the impact of confinement and surface defects on 2D materials within graphene or hBN nanochannels created through van der Waals assembly. We successfully completed the fabrication steps before annealing (last steps): including graphite/hBN exfoliation, transfer of flakes to various desired substrates (SiN, SiO2 on Si, or glass). We also fabricated nanoscale masks using electron beam lithography, and performed etching of nanochannels. We bought the membranes on top of which the nanochannels are assembled.
|
Academic Significance and Societal Importance of the Research Achievements |
ナノスケールの流体の流れは、独自の量子効果や表面効果により、より大きなスケールの流れとは大きく異なっています。これを理解することで、海水淡水化や青色エネルギー利用などのプロセスにおいて、より優れた性能を持つ膜の作成につながる可能性があります。その重要性にもかかわらず、ナノスケールの流れ、特に表面電荷と欠陥に関連する知識は、まだ限られています。表面電荷はナノスケールの流体挙動に大きく影響し、欠陥はこの電荷とその後の流れを変えることができます。ナノスケールの流れに依存する技術を発展させるためには、表面電荷と欠陥の相互作用についてより包括的に理解することが重要です。
|