Synthesis of porous carbon electrode material with low side reaction with Li-ions
Project/Area Number |
21K20560
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0502:Inorganic/coordination chemistry, analytical chemistry, inorganic materials chemistry, energy-related chemistry, and related fields
|
Research Institution | Nagasaki University |
Principal Investigator |
|
Project Period (FY) |
2021-08-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 多孔性カーボン / 不可逆容量 / 全固体電池 / Liイオン電池 |
Outline of Research at the Start |
全固体リチウムイオン電池の高容量化のためにはSnO2などの高容量な充放電活物質を利用する必要があるが,これらは充放電に伴う大きな体積変化のため,安定な作動に至っていない。多孔性カーボンは充放電活物質を全固体電池に適用するためのホスト電極材料として有効であるが,多孔性カーボン自体が初回サイクルに過剰な充電(負極へのLi挿入)容量を必要とすることによる容量ロスが課題となっている。本研究では,充放電過程の多孔性カーボンの構造変化の追跡により,過剰な充電容量の原因を明らかとし,多孔性カーボンの構造を最適化することで,Liとの副反応を抑制した新たな多孔性カーボン系電極材料を創製する。
|
Outline of Final Research Achievements |
Porous carbon is an effective host material for high-capacity active materials in all-solid-state batteries. However, irreversible capacity due to side reactions during the initial lithiation process is a severe problem for electrode materials. We investigated the cause of the irreversible reactions through structural observations of the porous carbon electrode during the lithiation-delithiation process. The main cause of the irreversible capacity is that active gases such as oxygen in the battery cell and oxygen-containing functional groups on the porous carbon surface react with Li ions and precipitate on the carbon surface. We succeeded in significantly reducing the irreversible capacity by controlling the atmosphere inside the battery cell and hydrogen-terminating the surface functional groups of the porous carbon.
|
Academic Significance and Societal Importance of the Research Achievements |
多孔性カーボン材料はSnO2などの高容量活物質のホスト材料として有効であり,全固体電池電極として高い充放電特性を発現することが明らかとされている。しかしながら,初回充放電サイクルにおける不可逆容量が大きく,充放電効率の低さが課題である。本研究では,この不可逆容量の要因を特定し,初回充放電の効率を向上させることに成功した。これにより,多孔カーボン電極を用いた高容量でサイクル特性に優れた全固体電池の創製が期待される。
|
Report
(3 results)
Research Products
(12 results)