Project/Area Number |
21K21317
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
1002:Human informatics, applied informatics and related fields
|
Research Institution | Nara Institute of Science and Technology |
Principal Investigator |
Fujimura Yuki 奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (40908729)
|
Project Period (FY) |
2021-08-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | コンピュータビジョン / 散乱媒体 / 深層学習 / フォトンマッピング / SPAD |
Outline of Research at the Start |
霧や煙といった空間に入射した光を散乱させる物質(散乱媒体)の解析は非常に有用である.例えば,空間の散乱媒体の濃度を推定することで撮影された画像の鮮明化などに利用できる.本研究は深層学習を用いて散乱媒体を解析することを目的とする.物理モデルと深層学習によるデータ駆動型アプローチを融合し,少数のRGBカメラといったシンプルな観測系において散乱媒体を解析する.
|
Outline of Final Research Achievements |
This research aims to estimate the density distribution of inhomogeneous participating media with deep learning and a physics-based model. In participating media such as fog or smoke, incident light is scattered by suspended particles, which causes scattered light. In this research, we developed the method to estimate the density distribution of participating media only with commonly-used RGB cameras by exploiting deep-learning technology. The input of the developed method is multiple images captured from different views. A density volume is modeled as the output of a convolutional neural network, and the volume is optimized by reconstructing observed images with photon mapping, which is one of physics-based renderers.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では深層学習技術とフォトンマッピングを用いて散乱媒体濃度分布の推定を行った.CGでの画像生成に用いられるフォトンマッピングを最適化に用いるためには,画像を生成するすべての過程を微分可能な形で実装する必要がある.本研究は世界で初めてフォトンマッピングを微分可能な形で実装した.実世界の散乱媒体の濃度分布を推定することは,物理モデルの解析や写実的なCGの生成など社会的にも重要である.
|