Project/Area Number |
22241025
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Nanostructural science
|
Research Institution | National Institute of Informatics (2011-2012) NTT Basic Research Laboratories (2010) |
Principal Investigator |
SEMBA Koichi 国立情報学研究所, 量子情報国際研究センター, 特任教授 (50393773)
|
Co-Investigator(Kenkyū-buntansha) |
NEMOTO Kae 国立情報学研究所, 情報学プリンシプル研究系, 教授 (80370104)
SAITO Shiro 日本電信電話 株式会社 NTT物性科学基礎研究所, 量子電子物性研究部, 主任研究員 (90393777)
KAKUYANAGI Kousuke 日本電信電話 株式会社 NTT物性科学基礎研究所, 量子電子物性研究部, 研究主任 (40417093)
NAKANO Hayato 日本電信電話 株式会社 NTT物性科学基礎研究所, 量子電子物性研究部, 主任研究員 (60393774)
ZHU Xiaobo 日本電信電話 株式会社 NTT物性科学基礎研究所, 量子電子物性研究部, リサーチアソシエイト (70536226)
KARIMOTO Shinichi 日本電信電話 株式会社 NTT物性科学基礎研究所, 量子電子物性研究部, 研究主任 (80393734)
KASU Makoto 佐賀大学, 工学(系)研究科(研究院), 教授 (50393731)
|
Co-Investigator(Renkei-kenkyūsha) |
MIZUOCHI Norikazu 大阪大学, 基礎工学研究科, 准教授 (00323311)
|
Project Period (FY) |
2010 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥43,810,000 (Direct Cost: ¥33,700,000、Indirect Cost: ¥10,110,000)
Fiscal Year 2012: ¥14,170,000 (Direct Cost: ¥10,900,000、Indirect Cost: ¥3,270,000)
Fiscal Year 2011: ¥16,640,000 (Direct Cost: ¥12,800,000、Indirect Cost: ¥3,840,000)
Fiscal Year 2010: ¥13,000,000 (Direct Cost: ¥10,000,000、Indirect Cost: ¥3,000,000)
|
Keywords | 人工原子 / 量子メモリー / ダイヤモンド / 微小共振器 / メゾスコピック系 / 超精密計測 / 超伝導 / NVセンター / エンタングルメント / 量子非破壊測定 / 量子通信 / (超)強結合 / cavity-QED(共振器量子電磁力学) / 光の強結合領域 / 擬確率分布関数 |
Research Abstract |
We have demonstrated strong coupling between a solid-state quantum processing unit (a superconducting artificial atom : a flux-qubit) and a dedicated quantum memory (nitrogen-vacancy (NV) centers in diamond). These results indicate that quantum information manipulated in flux qubits can be stored to and retrieved from an ensemble of NV centers. A quantum memory is an essential component for quantum communication and information processing. Our work demonstrated that diamond is a promising candidate for a future quantum memory. This is a significant step forward in the development of a quantum computer and additionally to an interface between the microwave and optical worlds. This result also demonstrated generation of entanglement between two distinct macroscopic matter i.e., the spin state of a few tens of million (attomol) NV centers and the persistent current circulating in a micro-meter sized electronic circuit, a flux-qubit. We have analysed the dynamics of the NV center ensemble and a single NV center strongly coupled with the superconducting qubit. We also investigated mathematical tools to represent these quantum states with a generalization of Wigner function as well as other quasi-distribution functions. This physical system can be applied to construct novel quantum information devices, such as memory and interface. We investigated several possibilities and showed advantages of such devices in quantum information network
|