Generating elliptic curves suitable for new type of pairing-based cryptography
Project/Area Number |
22300002
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Fundamental theory of informatics
|
Research Institution | University of Tsukuba |
Principal Investigator |
OKAMOTO Eiji 筑波大学, システム情報系, 教授 (60242567)
|
Co-Investigator(Kenkyū-buntansha) |
MAMBO Masahiro 金沢大学, 電子情報学系, 教授 (60251972)
KANAOKA Akira 筑波大学, システム情報系, 助教 (00455924)
|
Project Period (FY) |
2010 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥18,200,000 (Direct Cost: ¥14,000,000、Indirect Cost: ¥4,200,000)
Fiscal Year 2012: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
Fiscal Year 2011: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2010: ¥6,630,000 (Direct Cost: ¥5,100,000、Indirect Cost: ¥1,530,000)
|
Keywords | ID ベース暗号 / 楕円曲線 / ペアリング / 合成数位数 / 曲線生成 / 部分群判定問題 / ペアリング逆問題 / 楕円曲線スカラー倍 / 準同型写像 / 埋め込み次数 / インテリジェント暗号 / 公開鍵暗号 / ペアリング暗号 / 最終べき乗 / Weilペアリング / Tateペアリング / Millerのアルゴリズム / 正規化 / スカラー倍 |
Research Abstract |
Pairing-based cryptography is a type of public-key cryptography which uses pairings over elliptic curves. Pairings over elliptic curves have bilinearity and we can realize ID-based cryptography by using this property. Recently, ``new type’’pairing-based cryptosystems have been proposed based on many interesting mathematical problems. In this research, we worked about generation of elliptic curves suitable for such cryptosystems.
|
Report
(4 results)
Research Products
(17 results)