Privacy-Preserving Epidemiology Study for Vertically Partitioned Datasets
Project/Area Number |
22300028
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Computer system/Network
|
Research Institution | Meiji University (2013) Tokai University (2010-2012) |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
SAKUMA Jun 筑波大学, 大学院システム情報工学研究科(系), 准教授 (90376963)
|
Project Period (FY) |
2010-04-01 – 2014-03-31
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥14,170,000 (Direct Cost: ¥10,900,000、Indirect Cost: ¥3,270,000)
Fiscal Year 2013: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2012: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2011: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2010: ¥7,930,000 (Direct Cost: ¥6,100,000、Indirect Cost: ¥1,830,000)
|
Keywords | ネットワークセキュリティ技術 / プライバシー保護 / プライバシー / 暗号プロトコル / 疫学調査 / 情報セキュリティ / データマイニング / 垂直分割 |
Research Abstract |
This paper proposes a new privacy-preserving scheme for estimating the size of the intersection of two given secret subsets. Given the inner product of two Bloom filters (BFs) of the given sets, the proposed scheme applies Bayesian estimation under an assumption of beta distribution for an a priori probability of the size to be estimated. The BF retains the communication complexity and the Bayesian estimation improves the estimation accuracy. A possible application of the proposed protocol is an epidemiological datasets regarding two attributes, Helicobacter pylori infection and stomach cancer. Assuming information related to Helicobacter Pylori infection and stomach cancer are separately collected, the protocol demonstrates that a Chi-squared test can be performed without disclosing the contents of the two confidential databases.
|
Report
(5 results)
Research Products
(41 results)