Research and Construction of Vertex Operator Algebras of finite type
Project/Area Number |
22340002
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | University of Tsukuba |
Principal Investigator |
|
Project Period (FY) |
2010-04-01 – 2014-03-31
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
Fiscal Year 2013: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2012: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2011: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2010: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
|
Keywords | 頂点作用素代数 / 自己同型 / C2有限性 / 軌道理論 / 軌道構成 / ホロモルフィック頂点作用素代数 / ムーンシャイン頂点作用素代数 / モンスター単純群 / 有限自己同型群 / C2余有限 / 有理型 / シンプルカレント構成 / 2次元共形場理論 / C2有限性 / フュージョン積 / C1有限性 / ムーンシャイン予想 / フレイム頂点作用素代数 / 2次元共形場理論 / C1有限性 / 置換頂点作用素代数 / オービフォルド理論 / 格子頂点作用素代数 |
Research Abstract |
One of important problem on Conformal Field Theory (Vertex Operator Algebra) is to construct one of finite type. One of the candidates to construct one of finite type is an orbifold theory using a finite automorphism group, but it is not easy to treat. In this research, we succeed to prove the hereditary of C2-cofiniteness under the orbifold theory for a finite cyclic automorphism, which is the main purpose of this research. By this result, an orbifold construction of holomorphic vertex operator algebras becomes problems to check the weights and fusion rules. As application, several researchers succeeded to construct new holomorphic vertex operator algebra using this result.
|
Report
(5 results)
Research Products
(23 results)