Geometry of twistor spaces
Project/Area Number |
22340012
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Osaka University |
Principal Investigator |
FUJIKI Akira 大阪大学, その他部局等, 名誉教授 (80027383)
|
Co-Investigator(Kenkyū-buntansha) |
ENOKI Ichiro 大阪大学, 理学研究科, 准教授 (20146806)
USUI Sampei 大阪大学, 理学研究科, 教授 (90117002)
OGUISO Keiji 大阪大学, 理学研究科, 教授 (40224133)
GOTO Ryushi 大阪大学, 理学研究科, 教授 (30252571)
|
Project Period (FY) |
2010-04-01 – 2015-03-31
|
Project Status |
Completed (Fiscal Year 2014)
|
Budget Amount *help |
¥10,790,000 (Direct Cost: ¥8,300,000、Indirect Cost: ¥2,490,000)
Fiscal Year 2013: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2012: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2011: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2010: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | ツイスター空間 / 反自己双対多様体 / 双エルミート構造 / 非ケーラー曲面 / 反自己双対計量 / 井上曲面 / 自己同型群 / Joyce自己双対構造 / LeBrun自己双対構造 / Penrose対応 / 自己双対多様体 / ケーラー幾何学 / 複素多様体 / ハイパーケーラー多様体 |
Outline of Final Research Achievements |
In 2010 the author and M. Pontecorvo have constructed real-analytic family of anti-self-dual bi-hermitian structures for any hyperbolic Inoue surfaces, for instance. The construction, however, is done via the construction of the associated twistor spaces, and therefore the geometry implication of the parameters as deformation of anti-self-dual hermitian structures.In this investigation, based on the notions of Lee bundle L and the associated L-Kahler classes we have found a new framework for discussing the situation, and at least in the neighborhood of the boundary of the moduli space this framework actually works effectively.
|
Report
(5 results)
Research Products
(27 results)