Performance Improvement for Classifiers by Optimizing Training Samples
Project/Area Number |
22500172
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Perception information processing/Intelligent robotics
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
NISHIDA Kenji 独立行政法人産業技術総合研究所, ヒューマンライフテクノロジー研究部門, 主任研究員 (50344148)
|
Co-Investigator(Kenkyū-buntansha) |
KURITA Takio 広島大学, 大学院工学研究院情報部門, 教授 (10356941)
|
Project Period (FY) |
2010-04-01 – 2014-03-31
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2013: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2012: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2011: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2010: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | パターン認識 / 画像認識 / データマイニング / ITS / カーネル法 / 教師あり学習 / アンサンブル学習 / コンピュータビジョン / 汎化性向上 / サポートベクターマシン / マルチカーネル学習法 / 汎化性向上手法 / 特徴選択 / モデル選択 / 訓練サンプル最適化 |
Research Abstract |
A precise vehicle detection-and-tracking algorithm that is robust for the appearance change of the objects has been determined using an optimization of the training sample-set. An algorithm for obtaining the Random-Subset SVM ensemble is determined. The algorithm combines some weak-classifiers that are trained by small samples extracted from whole training sample set. The required training time for the ensemble classifier is considered to be smaller than the training a classifier using full-set of training samples, while attaining better generalization performance.
|
Report
(5 results)
Research Products
(21 results)