• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The non-abelian topological torsion and the Iwasawa polynomial

Research Project

Project/Area Number 22540068
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionChiba University

Principal Investigator

SUGIYAMA Ken-ichi  千葉大学, 理学(系)研究科(研究院), 教授 (90206441)

Project Period (FY) 2010-04-01 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2014: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2013: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2012: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2011: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2010: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords結び目群 / 双曲結び目 / 3次元双曲多様体 / A多項式 / 結び目 / 不変量 / Weil予想 / 虚数乗法 / 基本群 / 超幾何方程式 / 特性曲線 / Jones汎関数 / 楕円曲線 / L関数 / 特殊値 / 岩澤理論 / Birch & Swinnerton-Dyer予想 / Tate予想 / 測度 / オイラー系 / 岩澤多項式 / 非可換類体論 / 写像類群 / 多重対数関数 / Magnus展開
Outline of Final Research Achievements

The geometric structure of the complement of a knot in the three dimensional sphere is determined by its fundamental group. The group is called the knot group. If the complement admits a complete hyperbolic structure of finite volume the knot group is nothing but the Kleinian group which is a discrete subgroup of the 2×2 special linear group. It is an important object both in geometry and in number theory. Our research is to investigate how the knot group changes if one alters a crossing of a knot. If moreover the complement admits a complete hyperbolic metric of finite volume we have also studied the change of the hyperbolic structure. We also study a similarity between the Alexander polynomial and the Hasse-Weil congruent zeta function.

Report

(6 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Annual Research Report
  • 2012 Annual Research Report
  • 2011 Annual Research Report
  • 2010 Annual Research Report
  • Research Products

    (4 results)

All 2015 2014 2012

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results)

  • [Journal Article] On a generalization of Deuring's results2014

    • Author(s)
      Sugiyama, K
    • Journal Title

      Finite Fields and Their Applications

      Volume: 26C Pages: 69-85

    • DOI

      10.1016/j.ffa.2013.11.004

    • Related Report
      2014 Annual Research Report 2013 Annual Research Report
    • Peer Reviewed
  • [Presentation] RamanujanグラフとHasse-Weil合同ゼータ関数2015

    • Author(s)
      杉山健一
    • Organizer
      数理学談話会
    • Place of Presentation
      金沢大学理工研究領域数物科学系
    • Year and Date
      2015-02-04
    • Related Report
      2014 Annual Research Report
  • [Presentation] On a generalization of Deuring's results2014

    • Author(s)
      Ken-ichi Sugiyama
    • Organizer
      Low dimensional topology and number theory VI
    • Place of Presentation
      Soft Research Park Center, Fukuoka
    • Related Report
      2013 Annual Research Report
  • [Presentation] 高次元線型符号について2012

    • Author(s)
      杉山健一
    • Organizer
      金沢大学数学教室談話会
    • Place of Presentation
      金沢大学理学部
    • Year and Date
      2012-02-03
    • Related Report
      2011 Annual Research Report

URL: 

Published: 2010-08-23   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi