• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A generalization of the Atiyah-Singer Index Theorem on Noncommutative manifolds

Research Project

Project/Area Number 22540077
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNagoya University

Principal Investigator

MORIYOSHI Hitoshi  名古屋大学, 多元数理科学研究科, 教授 (00239708)

Co-Investigator(Renkei-kenkyūsha) MAEDA Yoshiaki  慶應義塾大学, 理工学部, 教授 (40101076)
MIYAZAKI Naoya  慶應義塾大学, 経済学部, 教授 (50315826)
KATO Tsuyoshi  京都大学, 大学院・理学研究科, 教授 (20273427)
NATSUME Toshikazu  名古屋工業大学, 工学系研究科, 教授 (00125890)
MITSUMATSU Yoshihiko  中央大学, 理工学部, 教授 (70190725)
ONO Kaoru  北海道大学, 大学院・理学研究院, 教授 (20204232)
Project Period (FY) 2010 – 2012
Project Status Completed (Fiscal Year 2012)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2012: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2011: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2010: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords指数定理 / 非可換幾何学 / K理論 / エータ不変量 / 葉層多様体 / Godbillon-Vey類 / 巡回コホモロジー / 非可換幾何 / 幾何学 / 位相幾何学 / 葉層構造 / Godbillon-Vey不変量
Research Abstract

The purpose of the present research are;
1) to find an extension of the Atiyah-Singerindex theorem in the framework of Noncommutative Geometry;
2) to apply such anoncommutative index theorem to Geometry and String theory. Achieving the presentresearch we obtained finally the following results.
First we extended the classicalAtiyah-Patodi-Singer index theorem to foliated manifolds with boundary of higherdimensional leaves and obtained an index theorem involved with the Godbillon-Veyclass (a joint work with P. Piazza).
Second, by exploiting the framework of Noncommutative Geometry, we extended the domain of the Godbillon-Vey class (differentiability of foliations), and related our cocycle to the area cocycle defined by T.Tsuboi.
Third, we clarified relationship among the family index theorem of odd dimension, the Dixmier-Douady class (a characteristic class of gerbe) and the Godbillon-Vey class.

Report

(4 results)
  • 2012 Annual Research Report   Final Research Report ( PDF )
  • 2011 Annual Research Report
  • 2010 Annual Research Report
  • Research Products

    (23 results)

All 2012 2011 2010 Other

All Journal Article (5 results) (of which Peer Reviewed: 3 results) Presentation (18 results) (of which Invited: 3 results)

  • [Journal Article] relative pairings and the Godbillon-Vey index theorem2012

    • Author(s)
      H. Moriyoshi and P. Piazza, Eta cocycles
    • Journal Title

      Geom. Funct. Anal.

      Volume: 22 Issue: 6 Pages: 1708-1813

    • DOI

      10.1007/s00039-012-0197-0

    • Related Report
      2012 Annual Research Report 2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] A de Rham cohomology with integer coefficients and its application, in Geometry and Something2011

    • Author(s)
      H. Moriyoshi
    • Journal Title

      Fukuoka

    • Related Report
      2012 Final Research Report
  • [Journal Article] Relative pairings and the Atiyah-Patodi-Singer index formula for the Godbillon-Vey cocycle, in Noncommutative Geometry and Global Analysis, (Ed. Connes, Gorokhovsky, Lesch, Pflaum and Rangipour)2011

    • Author(s)
      H. Moriyoshi and P. Piazza
    • Journal Title

      Contemporary Mathematics

      Volume: 546 Pages: 225-247

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] Relative pairings and the Atiyah-Patodi-Singer index formula for the Godbillon-Vey cocycle2011

    • Author(s)
      H.Moriyoshi, P.Piazza
    • Journal Title

      Contemporary Mathematics

      Volume: 546 Pages: 225-247

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The Chern-Weil theory on classifying spaces, in Geometry and Something2010

    • Author(s)
      H. Moriyoshi
    • Journal Title

      Fukuoka

      Pages: 29-31

    • Related Report
      2012 Final Research Report
  • [Presentation] Godbillon-Vey invariants and Dixmier-Douady classes2012

    • Author(s)
      森吉仁志
    • Organizer
      Baumfest
    • Place of Presentation
      Australian National University, Canberra, Australia
    • Year and Date
      2012-12-14
    • Related Report
      2012 Final Research Report
  • [Presentation] Godbillon-Vey invariants and Dixmier-Douady classes2012

    • Author(s)
      森吉仁志
    • Organizer
      Joint seminar FNRS-JSPS
    • Place of Presentation
      Louvain-la-Neuve, Belgium
    • Year and Date
      2012-11-15
    • Related Report
      2012 Final Research Report
  • [Presentation] Bott-Thurston-Tsuboi versus Dixmier-Douady2012

    • Author(s)
      森吉仁志
    • Organizer
      葉層構造と微分同相群 2012 (Foliations and Diffeomorphisms Groups 2012)
    • Place of Presentation
      東京大学玉原セミナーハウス
    • Year and Date
      2012-10-30
    • Related Report
      2012 Final Research Report
  • [Presentation] Eta cocycles and the Godbillon-Vey index theorem2012

    • Author(s)
      森吉仁志
    • Organizer
      Franco-Chinese Summer Mathematical Science Research Institute CNRS/NSFC
    • Place of Presentation
      Fudan University, Shanghai, China
    • Year and Date
      2012-07-26
    • Related Report
      2012 Final Research Report
  • [Presentation] 整係数ド・ラームコホモロジー群とその応用2011

    • Author(s)
      森吉仁志
    • Organizer
      福岡微分幾何研究会 ``Geometry and Everything"
    • Place of Presentation
      福岡大学
    • Year and Date
      2011-11-06
    • Related Report
      2012 Final Research Report
  • [Presentation] 整係数ド・ラームコホモロジー群とその応用2011

    • Author(s)
      H.Moriyoshi
    • Organizer
      福岡微分幾何研究会"Geometry and Everything"
    • Place of Presentation
      福岡大学
    • Year and Date
      2011-11-06
    • Related Report
      2011 Annual Research Report
  • [Presentation] The Godbillon-Vey invariant and Hilbert transform2011

    • Author(s)
      森吉仁志
    • Organizer
      Plane Fields on Manifolds and Diffeomorphisms Groups 2011
    • Place of Presentation
      東京大学玉原セミナーハウス
    • Year and Date
      2011-10-31
    • Related Report
      2012 Final Research Report 2011 Annual Research Report
  • [Presentation] Eta cocycles and the Godbillon-Vey index theorem2011

    • Author(s)
      森吉仁志
    • Organizer
      Analysis and Topology in Interaction 2011
    • Place of Presentation
      Cortona, Italy
    • Year and Date
      2011-06-10
    • Related Report
      2012 Final Research Report
  • [Presentation] Eta cocycles and the Godbillon-Vey index theorem2011

    • Author(s)
      H.Moriyoshi
    • Organizer
      Analysis and Topology in Interaction 2011
    • Place of Presentation
      Cortona, Italy(招待講演)
    • Year and Date
      2011-06-10
    • Related Report
      2011 Annual Research Report
  • [Presentation] Eta cocycle and relative index theorem, Perspectives in Deformation Quantization and Noncommutative Geometry2011

    • Author(s)
      森吉仁志
    • Organizer
      RIMS Kyoto University
    • Place of Presentation
      Kyoto, Japan
    • Year and Date
      2011-02-22
    • Related Report
      2012 Final Research Report
  • [Presentation] Eta cocycle and relative index theorem2011

    • Author(s)
      H.Moriyoshi
    • Organizer
      Perspectives in Deformation Quantization and Noncommutative Geometry
    • Place of Presentation
      RIMS Kyoto University
    • Year and Date
      2011-02-22
    • Related Report
      2010 Annual Research Report
  • [Presentation] Toeplitz operators, the index theorem and Connes' quantum calculus2011

    • Author(s)
      森吉仁志
    • Organizer
      The 4 th International School and Conference on Geometry and Quantization
    • Place of Presentation
      Chinese Academy of Sciences, Beijing, China
    • Related Report
      2012 Final Research Report
  • [Presentation] Toeplitz operators, the index theorem and Connes' quantum calculus2011

    • Author(s)
      H.Moriyoshi
    • Organizer
      The 4 th International School and Conference on Geometry and Quantization
    • Place of Presentation
      Chinese Academy of Sciences, Beijing, China(招待講演)
    • Related Report
      2011 Annual Research Report
  • [Presentation] Twisted Riemann-Roch theorem on K-aspherical manifolds2010

    • Author(s)
      森吉仁志
    • Organizer
      The 6th Geometry Conference for Friendship of China and Japan
    • Place of Presentation
      Northwest University, Xi'an, China
    • Year and Date
      2010-09-07
    • Related Report
      2012 Final Research Report 2010 Annual Research Report
  • [Presentation] Eta cocycles and the Godbillon-Vey index theorem

    • Author(s)
      H.Moriyoshi
    • Organizer
      ``Noncommutative Geometry'' Franco-Chinese Summer Mathematical Science Research Institute
    • Place of Presentation
      Fudan University, Shanghai, China
    • Related Report
      2012 Annual Research Report
    • Invited
  • [Presentation] Bott-Thurston-Tsuboi versus Dixmier-Douady

    • Author(s)
      H.Moriyoshi
    • Organizer
      葉層構造と微分同相群2012
    • Place of Presentation
      東京大学玉原セミナーハウス
    • Related Report
      2012 Annual Research Report
  • [Presentation] Godbillon-Vey invariants and Dixmier-Douady classes

    • Author(s)
      H.Moriyoshi
    • Organizer
      Joint seminar FNRS-JSPS
    • Place of Presentation
      Louvain-la-Neuve, Belgium
    • Related Report
      2012 Annual Research Report
    • Invited
  • [Presentation] Godbillon-Vey invariants and Dixmier-Douady classes

    • Author(s)
      H.Moriyoshi
    • Organizer
      Baumfest
    • Place of Presentation
      Australian National University, Canberra, Australia
    • Related Report
      2012 Annual Research Report
    • Invited

URL: 

Published: 2010-08-23   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi