Project/Area Number |
22540093
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Nagoya City University |
Principal Investigator |
KAMADA Naoko 名古屋市立大学, その他の研究科, 教授 (60419687)
|
Co-Investigator(Renkei-kenkyūsha) |
KANENOBU Taizo 大阪市立大学, 理学(系)研究科(研究院), 教授 (00152819)
SATOH Shin 神戸大学, 理学(系)研究科(研究院), 准教授 (90345009)
MIYAZAWA Yasuyuki 山口大学, 理工学研究科, 教授 (60263761)
|
Project Period (FY) |
2010 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2012: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2011: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2010: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 位相幾何 / 結び目 / 不変量 |
Research Abstract |
We defined the quandles of the stable equivalence classes of knots in thickened surfaces (twisted knots) and gave the geometric interpretation of the quandles of twisted knots. We also introduced the multivariable polynomial invariants and the index polynomials of twisted knots and showed that they are useful to distinguish twisted knots. We coded the computer programs to makes the list of twisted knot diagrams and to calculate the invariants of twisted knots. Using the programs, we constructed thetable of twisted knots.
|