• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The number of Cromwell moves needed for unknotting an arc-presentation of the trivial knot

Research Project

Project/Area Number 22540101
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionJapan Women's University

Principal Investigator

HAYASHI Chuichiro  日本女子大学, 理学部, 教授 (20281321)

Project Period (FY) 2010 – 2012
Project Status Completed (Fiscal Year 2012)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2012: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2011: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2010: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords結び目理論 / 自明結び目 / アーク表示 / クロムウェル変形 / 位相幾何学 / 幾何学
Research Abstract

A knot is a circle in the 3-dimensional space R3. Every knot can be placed in a figure in the form of an open-book (a book opened so that every adjacent pair of pages are tangent to each other only in the biding) so that it intersects every page in a single arc). We call such a placement of a knot an arc-presentation. A knot is called trivial if it lies in a plane after being moved continuously. The trivial knot has an arc-presentation with two arcs. An example of infinite sequence of arc-presentations with n arcs of the trivial knot as below is given. They need linearly many exchange moves not changing the number of arcs with respect to n until they admit a merge move decreasing the number of arcs.

Report

(4 results)
  • 2012 Annual Research Report   Final Research Report ( PDF )
  • 2011 Annual Research Report
  • 2010 Annual Research Report
  • Research Products

    (22 results)

All 2012 2011 2010 Other

All Journal Article (11 results) (of which Peer Reviewed: 11 results) Presentation (7 results) Remarks (4 results)

  • [Journal Article] Minimal unknotting sequence of Reidemeister moves containing unmatched RII moves2012

    • Author(s)
      Chuichiro Hayashi, Miwa Hayashi, Minori Sawada and Sayaka Yamada
    • Journal Title

      Journal of Knot Theory and its Ramifications

      Volume: Vol.21, No.10 Pages: 13-13

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] Unknotting number and number of Reidemeister moves neededfor unlinking2012

    • Author(s)
      Chuichiro Hayashi, Miwa Hayashi andTahl Nowik
    • Journal Title

      Topology and its Applications

      Volume: Vol.159 Pages: 1467-1474

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] On linear n-colorings for knots2012

    • Author(s)
      Chuichiro Hayashi, Miwa Hayashi and Kanako Oshiro
    • Journal Title

      Journal of Knot Theory and its Ramifications

      Volume: Vol.21, No.14 Issue: 14 Pages: 13-13

    • DOI

      10.1142/s0218216512501234

    • Related Report
      2012 Annual Research Report 2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] Genus two Heegaard splittings of1-genus 1-bridge knots2012

    • Author(s)
      Hiroshi Goda and Chuchiro Hayashi
    • Journal Title

      Kobe Journal of Mathematics

      Volume: Vol. 29 Pages: 45-84

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] Genus two Heegaard splittings of1-genus 1-bridge knots II2012

    • Author(s)
      Hiroshi Goda and Chuichiro Hayashi
    • Journal Title

      SaitamaMathematical Journal

      Volume: Vol. 29 Pages: 25-54

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Journal Article] Unknotting number and number of Reidemeister moves needed for unlinking.2012

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Topology and its Applications

      Volume: 159 Pages: 1467-1474

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Minimal unknotting sequences of Reidemeister moves containing unmatched RII moves.2012

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Journal of Knot Theory and its Ramifications

      Volume: 21 Issue: 10 Pages: 1-13

    • DOI

      10.1142/s021821651250099x

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Genus two Heegaard splittings of 1-genus 1-bridge knots.2012

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Kobe Journal of Mathematics

      Volume: 29 Pages: 45-84

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Genus two Heegaard splittings of 1-genus 1-bridge knots II2012

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Saitama Mathematical Journal

      Volume: 29 Pages: 25-54

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Unknotting number and number Reidemeister moves needed for unlinking2012

    • Author(s)
      Chuichiro Hayashi, Miwa Hayashi, Tahl Nowik
    • Journal Title

      Topology and its Applications

      Volume: 159 Issue: 5 Pages: 1467-1474

    • DOI

      10.1016/j.topol.2012.01.008

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Canonical forms for operation tables of finite connected quandles

    • Author(s)
      Chuichiro Hayashi
    • Journal Title

      Communications in Algebra

    • Related Report
      2012 Final Research Report
    • Peer Reviewed
  • [Presentation] 自明結び目のレクタンギュラー・ダイアグラム I2012

    • Author(s)
      西川友紀(話者)、林忠一郎
    • Organizer
      2012琉球結び目セミナー
    • Place of Presentation
      那覇市ぶんか テンブス館
    • Year and Date
      2012-09-03
    • Related Report
      2012 Final Research Report
  • [Presentation] 自明結び目のレクタンギュラー・ダイアグラムII2012

    • Author(s)
      山田さやか(話者)、林忠一郎
    • Organizer
      2012琉球結び目セミナー
    • Place of Presentation
      那覇市ぶんかテンブス館
    • Year and Date
      2012-09-03
    • Related Report
      2012 Annual Research Report 2012 Final Research Report
  • [Presentation] 自明結び目のレクタンギュラー・ダイアグラムIII2012

    • Author(s)
      林忠一郎
    • Organizer
      2012琉球結び目セミナー
    • Place of Presentation
      那覇市ぶんかテンブス館
    • Year and Date
      2012-09-03
    • Related Report
      2012 Annual Research Report 2012 Final Research Report
  • [Presentation] 自明結び目のレクタンギュラー・ダイアグラムI2012

    • Author(s)
      西川友紀
    • Organizer
      2012琉球結び目セミナー
    • Place of Presentation
      那覇市ぶんかテンブス館
    • Related Report
      2012 Annual Research Report
  • [Presentation] Minimal unknotting sequences of Reidemeister moves containing unmatched RII moves2011

    • Author(s)
      山田さやか(話者)、澤田実、林忠一郎、 林美和
    • Organizer
      研究集会「結び 目の数学IV」
    • Place of Presentation
      早稲田大学
    • Year and Date
      2011-12-27
    • Related Report
      2012 Final Research Report
  • [Presentation] CowritheとReidemeister変形の回数-torusknotsへの応用2010

    • Author(s)
      林忠一郎(話者)、林美和(話者)
    • Organizer
      結び目の数理セミナーKnottingNagoya
    • Place of Presentation
      名古屋工業大学
    • Year and Date
      2010-06-06
    • Related Report
      2012 Final Research Report
  • [Presentation] CowritheとReidemeister変形の回数-torus knotsへの応用2010

    • Author(s)
      林忠一郎
    • Organizer
      Knotting Nagoya
    • Place of Presentation
      名古屋工業大学
    • Year and Date
      2010-06-06
    • Related Report
      2010 Annual Research Report
  • [Remarks]

    • URL

      http://www2.jwu.ac.jp/kgr/jpn/ResearcherInformation/ResearcherInformation.aspx?KYCD=00006715

    • Related Report
      2012 Final Research Report
  • [Remarks] 研究者情報

    • URL

      http://www2.jwu.ac.jp/kgr/jpn/ResearcherInformation/ResearcherInformation.aspx?KYCD=00006715

    • Related Report
      2012 Annual Research Report
  • [Remarks]

    • URL

      http://www2.jwu.ac.jp/kgr/jpn/ResearcherInformation/ResearcherInformation.aspx?KYCD=00006715

    • Related Report
      2011 Annual Research Report
  • [Remarks]

    • URL

      http://mcm-www.jwu.ac.jp/~hayashic/index.html

    • Related Report
      2010 Annual Research Report

URL: 

Published: 2010-08-23   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi