Project/Area Number |
22540119
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Kanazawa University |
Principal Investigator |
ITO Shunji 金沢大学, 自然科学研究科, 研究員 (30055321)
|
Co-Investigator(Kenkyū-buntansha) |
FUJISAKI Hiroshi 金沢大学, 電子情報学系, 准教授 (80304757)
|
Co-Investigator(Renkei-kenkyūsha) |
FURUKADO Maki 横浜国立大学, 国際社会科学研究科, 助手 (20303068)
|
Project Period (FY) |
2010 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2012: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2011: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2010: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 高次元連分数アルゴリズム / サブスティテューション / タイリングサブスティテューション / フラクタル / 準周期タイリング / 領域交換変 / エルゴード理論 / マルコフ分割 / non-Pisot数 |
Research Abstract |
It is known the condition of the digit sequence obtained by the Jacobi-Perron algorithm which generates a quasi-periodic tiling of the plane in Ito-Ohtsuki (1994). In this project, we showed that we can get the analogous result in terms of the new three multi dimensional algorithms.
|