Applications of global coordinate systems for the representation spaces of punctured surface groups
Project/Area Number |
22540191
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Shimane University |
Principal Investigator |
|
Co-Investigator(Renkei-kenkyūsha) |
SAKUMA Makoto 広島大学, 理学研究科, 教授 (30178602)
MOROSAWA Shunsuke 高知大学, 理学部, 教授 (50220108)
MIYACHI Hideki 大阪大学, 理学研究科, 准教授 (40385480)
|
Research Collaborator |
NAKAMURA Gou 愛知工業大学, 工学部, 准教授 (50319208)
|
Project Period (FY) |
2010 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2012: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2011: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2010: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | タイヒミュラー空間 / リーマン面 / 離散群 / 写像類群 / 双曲幾何学 / フックス群 / 双曲幾何 / マクシェイン型恒等式 / 不連続群 |
Research Abstract |
R.C.Penner’s lambda length coordinate system for the Teichmuller space of a punctured surface has many applications to complex analysis, differential geometry, topology and to mathematical physics. We introduced a complexification of Penner’s coordinates in order to parametrize SL(2,C) representation spaces of punctured surface groups. The complex coordinates are applied to the theories of Kleinian groups, hyperbolic 3-manifolds, mapping class groups, complex dynamics and number theory.
|
Report
(4 results)
Research Products
(22 results)