Project/Area Number |
22540205
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Keio University |
Principal Investigator |
|
Co-Investigator(Renkei-kenkyūsha) |
KOTANI Shinichi 関西学院大学, 理工学部, 教授 (10025463)
UEKI Naomasa 京都大学, 大学院人間・環境学研究科, 教授 (80211069)
NAKANO Fumihiko 学習院大学, 理学部, 教授 (10291246)
NAGAO Taro 名古屋大学, 大学院多元数理科学研究科, 教授 (10263196)
MAKINO Hironori 東海大学, 情報理工学部, 准教授 (40338786)
|
Project Period (FY) |
2010-04-01 – 2014-03-31
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2013: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2012: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2011: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2010: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | スペクトル統計 / ランダム作用素 / 点過程 / 自己共役性 / 漸近エルゴード性 / 確率エアリー作用素 / 確率論 / スペクトル理論 / ランダム行列 / 数理物理 / 数理物理学 / 準位統計 |
Research Abstract |
(1) We introduced the concept of "asymptotic ergodicity" as a mathematical formulation of the similarity, under some scaling, of discrete spectrum of a self adjoint operator with a typical realization of a stationary point process. We also showed asymptotic ergodicity forthe spectrum of a certain one dimensional Schroedinger operator, and obtained a partial result for discrete Anderson models. (2) We considered a one dimensional Schroedinger operator H on the half line whose potential term consists of white noise plus a uniform electric field tending to plus infinity. Despite of the singularity of white noise term, we showed that H can be realized as a self-adjoint operator and has purely discrete spectrum, with probability one.
|