Mathematical analysis to non-stationary Navier-Stokes equations in the domain with a corner.
Project/Area Number |
22540239
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Global analysis
|
Research Institution | Fukuoka University |
Principal Investigator |
TANAKA Naoto 福岡大学, 理学部, 教授 (00247222)
|
Co-Investigator(Kenkyū-buntansha) |
YAMADA Naoki 福岡大学, 理学部, 教授 (50030789)
|
Co-Investigator(Renkei-kenkyūsha) |
TANI Atusi 慶応義塾大学, 名誉教授 (90118969)
ITOH Shigeharu 弘前大学, 教育学部, 教授 (40193487)
|
Project Period (FY) |
2010 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2012: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2011: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2010: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
|
Keywords | Navier-Stokes 方程式 / Stokes 方程式 / 角がある領域 / 解の特異性 / 扇形領域 / 角の近くでの特異性 / Fourier-Bessele展開 / ヘルダー評価 / Navier-stokes方程式 / Stokes方程式 / Navier-Stokes方程式 / 非定常流 / 熱方程式 / Poisson方程式 |
Research Abstract |
In this study we have considered Navier-Stokes equations describing incompressible viscous fluid flow in the domain with a corner point. We assume that flow under consideration is parallel and analyze the problem in a plane sector. For the linearized equation which neglect the nonlinear term (convection term) we succeed to classify the order of the singularity of the solution near the corner according to the width of the angle. The result is in preparation for publication.
|
Report
(4 results)
Research Products
(19 results)