Project/Area Number |
22K03351
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12010:Basic analysis-related
|
Research Institution | Nagoya University |
Principal Investigator |
中島 誠 名古屋大学, 多元数理科学研究科, 准教授 (60635902)
|
Project Period (FY) |
2022-04-01 – 2027-03-31
|
Project Status |
Granted (Fiscal Year 2022)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2026: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2025: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2024: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | シュレディンガー作用素 / 相互作用 / KPZ方程式 / ランダム媒質中のディレクティドポリマー |
Outline of Research at the Start |
ランダム媒中のディレクティドポリマー(DPRE) の1次元における超拡散性(媒質の影響によりブラウン運動に比べて遠くへいくこと)の証明, および確率熱方程式(SHE), KPZ方程式に対してその解の摂動の解析を行う. 超拡散性の証明のために自由エネルギーの解析を行い, その摂動係数と呼ばれる指数を求める. SHEおよびKPZ方程式の解の摂動はあるパラメータの領域においては中心極限定理が成り立つことが知られており, その領域の外における摂動に対する研究を行う.
|
Outline of Annual Research Achievements |
量子力学においては非線形作用素の自己共役性が非常に重要である. しかし一般の非線形作用素は自己共役ではないため, 自己共役拡大と呼ばれるものを考えることがある. 今年度の研究では3次元ユークリッド空間から原点を取り除いてできる空間上でラプラシアンを考え, そのL^2での自己共役拡大に注目した. これはS. Albeverioらによって古くから研究されており関数解析の手法で具体的に1つのパラメータの族になることが知られている. 一方でこの拡大ラプラシアンは短距離相関を持つシュレディンガー作用素によってノルムレゾルベントの意味で近似できることも示されていた. 確率論の視点で見るとシュレディンガー作用素に対応する半群を考えると自然にFeynman-Kac公式が現れることに注目し, Feynman-Kac公式から誘導される測度で考えたBrown運動の極限を考えることにした. その結果Brown運動と特異な確率過程が自然に現れることが示された. これはCranstonらの構成した確率模型と同等のものであるが, 彼らの構成は非自明な遷移確率を用いて構成したのに対し, 今回の結果ではピニング模型の理論を用いて構成的に極限過程を導けたため, 見通しが良くなった.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
当初予定していた2次元確率熱方程式の性質の研究においては進展はあまり見られなかった. 一方でその研究を進めていくうちに, Schrodinger作用素のL^2における自己共役拡大に関連する問題をピニング模型というこれまで研究してきた確率模型の問題に落とし込むことに着目することでSchrodinger作用素のL^2における自己共役拡大に対応する熱方程式とそのFeymnan-Kac表現を与えることに成功したことは非常に大きな進展であると言える. 先行研究でも上記の熱方程式の基本解の表現は与えられており, またFeynman-Kac表現で現れる確率過程Bの存在はわかっていた. 今回はpinんing模型による理論を用いることで非自明であった確率過程Bの具体的な表現が与えられたことに意味がある.
|
Strategy for Future Research Activity |
今回の1点と相互作用を持つシュレディンガー作用素に対応する確率過程は非常に興味深いものである. 一方でその構成法から個人的には半群に対する具体的なFeynman-Kac公式とは言い難いものがある. というのも通常では現れないような係数を導入して記述するからである. これは主にエネルギーの増加に対応するものが現れているものと思われる. そこでエネルギーの増加を粒子の増加に置き換えることで同様に記述できる方法を検討していく.
|
Report
(1 results)
Research Products
(8 results)