ジャンプ型確率ボラティリティモデルに対するボラティリティ・サーフェスの研究
Project/Area Number |
22K03419
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12040:Applied mathematics and statistics-related
|
Research Institution | Keio University |
Principal Investigator |
新井 拓児 慶應義塾大学, 経済学部(三田), 教授 (20349830)
|
Project Period (FY) |
2022-04-01 – 2025-03-31
|
Project Status |
Granted (Fiscal Year 2022)
|
Budget Amount *help |
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2024: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 数理ファイナンス / 確率論 / 数値計算 |
Outline of Research at the Start |
代表的なジャンプ型確率ボラティリティ(SV)モデルであるBarndorff-Nielsen and Shephard(BNS)モデルに対し、インプライド・ボラティリティの近似式の導出やボラティリティ・サーフェスの分析を行う。また、これらの成果を発展させ、パラメータのカリブレーション手法の提案も目指す。さらに、BNSモデル以外のジャンプ型SVモデルにも研究を広げたい。
|
Outline of Annual Research Achievements |
本研究は数理ファイナンスの主要トピックの一つである金融派生証券の価格付け理論に関するものであり、特に確率ボラティリティモデルに対するボラティリティ・サーフェスの分析を行うことを目的としている。金融派生証券の価格付け理論は、Black-Scholesモデルを拡張させることで発展してきた。ボラティリティ・サーフェス上に現れるスマイルやスキューなどの現象は、Black-Scholesモデルが資産価格モデルとして正しくないことを示している。そこで、これらの現象を説明できるモデルとして、確率ボラティリティモデルが注目されてきた。しかし、これまでボラティリティ・サーフェスの分析が行われきたモデルは、連続なパスを持つものが中心であった。そこで本研究では、代表的なジャンプ型確率ボラティリティモデルであるBarndorff-Nielsen and Shephardモデル(BNSモデル)を中心に、インプライド・ボラティリティの近似式の導出やボラティリティ・サーフェスの分析を行う。さらに、ボラティリティ・サーフェスの導出を、最近発展が著しい深層学習と組み合わせることで、モデルパラメータのキャリブレーションやヘッジ計算など、様々なトピックに応用できることが分かった。令和4年度(2022年度)は、BNSモデルに対して、教師無し深層学習を用いたオプション価格計算の研究に取り組んだ。さらに、深層学習を用いたキャリブレーションに関する研究に着手し、とりわけ、最近注目を集めている2段階アプローチによるキャリブレーション手法に関する研究に取り組んだ。
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
研究打ち合わせや国際学会での講演などを目的とした国外出張ができなかったため。
|
Strategy for Future Research Activity |
確率ボラティリティモデルを対象に、深層学習を用いたモデルパラメータのキャリブレーションの研究を推進していく予定である。とりわけ、2段階アプローチと言われる手法に注目している。このアプローチでは、最初のステップでボラティリティ・サーフェスを教師あり学習により導出する。このステップに関してはまだまだ改良の余地があり、ボラティリティ・サーフェスのより詳細な分析を行い、高速かつ高精度なキャリブレーション手法の開発につなげたい。
|
Report
(1 results)
Research Products
(2 results)