• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

HDG法における反復型領域分割法の開発

Research Project

Project/Area Number 22K03432
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

及川 一誠  筑波大学, 数理物質系, 准教授 (10637466)

Project Period (FY) 2022-04-01 – 2027-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2026: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2025: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2024: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords数値解析 / HDG法
Outline of Research at the Start

偏微分方程式の大規模な数値計算において,領域分割法に基づいた並列計算は非常に効果的である.本研究ではHybridizable Discontinuous Galerkin (HDG) 法における新しい反復型領域分割法の開発と数学解析を行う.
同時に,インターフェース条件を介したカップリング問題に対しても,インターフェース上のハイブリッド変数を反復させるタイプのHDG法の開発を行う.最終的には,反復型領域分割法とインターフェース反復法を自然な形で融合させた数値計算手法の開発を目指す.

Outline of Annual Research Achievements

2次元Poisson方程式の斉次Dirichlet境界値問題をモデル問題とし,HDG (Hybridizable Discontinuous Galerkin)法に対するnon-overlapping Schwarz アルゴリズムの研究を行った.
non-overlapping Schwarzアルゴリズムは,領域をいくつかの重複のないサブドメインに分割し,より小さなサブプロブレムたちに問題を分割し,より効率的な数値計算することを目的とする.個別にサブプロブレムたちを解いたあと,それらの数値解はサブドメイン間においてインターフェース条件を満足する必要があるが,通常はサブプロブレムの求解と更新プロセスを繰り返すことにより対処される.non-overlapping SchwarzアルゴリズムとしてDirichlet-Dirichlet法やNeumann-Neumann法など,様々なものが提案されているが,古典的なものとして,Dirichlet-Neumannアルゴリズムというものがある.
今年度は,Dirichlet-NeumannアルゴリズムをHDG法に適合するように昇華させ,新アルゴリズムを考案し,それに関する研究を行った.新アルゴリズムのキーアイデアはシンプルで,HDG法の定式化で用いられるnumerical trace および fluxを,インターフェース条件における更新プロセスにおいて交互に用いることである.
これにより,HDG法自体に特別な変更を加えることなく,non-overlappingアルゴリズムが実装できるようになった.長方形領域を一列に並んだ複数のサブドメインに分割した例において数値計算を実施し,良好な収束性を示すことを確認できた.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

本研究の目的はHDG法における有効なnon-overlappingアルゴリズムを考案し,数学解析を行うことであった.今年度の研究結果により,HDG法に自然に実装できる新しいタイプのアルゴリズムを導出することができた.これにより,研究目的のひとつは達成されたことになる.したがって,おおむね順調に進展していると判断した.

Strategy for Future Research Activity

今年度の研究で得られたHDG法における新タイプのnon-overlappingアルゴリズムに対して,より詳細な数値計算を実施し,有効性の検討を行う.サブドメインへの分割数,サブドメインの領域形状に関するインターフェースにおける更新プロセスの収束性の調査も行う.

Report

(2 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • Research Products

    (1 results)

All 2023

All Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Presentation] A non-overlapping Schwarz algorithm for the HDG method2023

    • Author(s)
      Issei OIKAWA
    • Organizer
      ICIAM2023
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2022-04-19   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi