• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Hybrid Flood Forecasting System based on Rainfall Information from Machine Learning Algorithm

Research Project

Project/Area Number 22K04332
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 22040:Hydroengineering-related
Research InstitutionKyoto University

Principal Investigator

Kim Sunmin  京都大学, 工学研究科, 准教授 (10546013)

Project Period (FY) 2022-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2024: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords機械学習・深層学習 / 降雨予測・水位予測 / ダムの洪水調節 / 洪水予測 / 降雨予測 / 機械学習
Outline of Research at the Start

流域面積が100km2程度の小河川流域でも6時間先まで高い精度で洪水予測を実現することを目標として、機械学習に基づいた予測手法と既存の物理モデルに基づいた予測手法を融合した新たな概念のハイブリッド洪水予測システムを開発する。特に、必要な精度を出すことができなかった高解像度の降雨予測を実現するために、最新の機械学習手法と3次元気象レーダー観測情報を活用した降雨予測モデルを開発する。

Outline of Annual Research Achievements

1)機械学習を活用した降雨予測モデルの開発
Convolutional Encoder-DecoderアルゴリズムとConvolutional-LSTMアルゴリズムを利用し、XバンドMPレーダー観測情報を入力とした短期降雨予測モデルの開発を行った。Convolutional Encoder-Decoderアルゴリズムを用いたモデルに対して安定的な学習ができてモデル化に成功したが、精度の高い学習を行うためには多くの観測データ(降雨事例)を用いた学習テストが必要であり、モデル化の効率性を考慮して既存の物理基盤モデルとの運用を模索している。
2)機械学習を活用した水位・流量予測モデルの検証
ANN基盤の水位予測モデルに対して様々な組み合わせの入力情報をテストし、モデルの予測精度を最適化することができる入力情報と学習条件を調査した。また、淀川流域の任意の水位地点に対して自動的に関連データを取得して機械学習を行うことが可能なアルゴリズムを開発中である。開発中のアルゴリズムは初心者のユーザーでもウェブ上で基本的な水位・流量予測のための機械学習モデルを簡単に作成できることを目指している。
3)気象変数との相関を考慮した中長期降雨予測モデルの開発
効率的なダム操作など洪水対策の一環として数日から数週間の降雨予測が可能な、気象変数を入力として機械学習モデルを作成した。作成したモデルに対して必要な気象変数を厳密に調査するために、再解析モデルからの気象変数情報を使用して入力データに対するFeature Selection Testを実施した。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

機械学習アルゴリズムを用いて降雨予測モデルおよび水位・流量予測モデルを開発し、モデルの予測精度を向上させるために入力変数や学習条件などを検証した。また、効率的なダム操作など洪水対策の一環として数日から数週間の降雨予測が可能な機械学習モデルの作成も進めている。

Strategy for Future Research Activity

1)機械学習を活用した降雨予測モデルの改良
XバンドMPレーダーからの3次元観測情報を入力情報として、CNNおよびConvolutional-LSTMの機械学習アルゴリズムを活用し、6時間先まで降雨の時空間情報を推定できる短期降雨予測モデルの開発を続く。AMEDAS地上観測情報およびひまわり衛星観測情報を入力情報として活用し、降雨予測モデルの精度向上を目指す。検証では、最近10年間観測された多数の降雨事例に対して開発モデルをテストし、実用化まで視野に入れる。
2)物理モデルと人工知能モデルを融合した予測システムの構築
最近10年間観測された多数の洪水事例に対して検証を行い、機械学習基盤の洪水予測モデルと物理基盤の洪水予測モデルの精度および効率に対して比較検討を行う。両モデルの特徴を考慮して各モデルの精度をさらに向上する方法を模索する。物理モデルと人工知能モデルのそれぞれの特徴と長所を生かしたハイブリッドシステムを構築する。例えば、3時間先までの降雨予測は物理基盤モデルを重視し、6時間先までの予測は人工知能モデルの予測を活用する。または、洪水警報基 準点の水位予測は人工知能モデルで行い、上流のダム流入量の予測は物理基盤の分布型流出モデルを活用する。

Report

(2 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • Research Products

    (8 results)

All 2023 2022

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (7 results)

  • [Journal Article] EFFECTS OF INPUT VARIABLE SELECTION IN ARTIFICIAL NEURAL NETWORK FOR WATER STAGE FORECASTING2022

    • Author(s)
      KIM Sunmin、TAKAMI Kento、TACHIKAWA Yasuto
    • Journal Title

      Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering)

      Volume: 78 Issue: 2 Pages: I_145-I_150

    • DOI

      10.2208/jscejhe.78.2_I_145

    • ISSN
      2185-467X
    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Presentation] Machine Learning of GCM Atmospheric Variables for Spatial Downscaling of Precipitation Data2023

    • Author(s)
      Sunmin Kim, Masaharu Shibata, and Yasuto Tachikawa
    • Organizer
      KWRA Annual Conference, Korea
    • Related Report
      2023 Research-status Report
  • [Presentation] Selection of Input Variables in ANN for Precise Hydrological Modeling and Prediction2023

    • Author(s)
      Sunmin Kim and Yasuto Tachikawa
    • Organizer
      CHES Annual Conference, China
    • Related Report
      2023 Research-status Report
  • [Presentation] A Brief History of Activation Functions in ANN for Hydrological Modeling2023

    • Author(s)
      Sunmin Kim and Yasuto Tachikawa
    • Organizer
      2023 BK21(4th) International Joint Seminar (Daegu, Korea)
    • Related Report
      2022 Research-status Report
  • [Presentation] Development of Real-time Dam Reservoir Operation Model based on Reinforced Learning without Any Flood Prediction Data2023

    • Author(s)
      Masaharu Shibata, Sunmin Kim, and Yasuto Tachikawa
    • Organizer
      2023 BK21(4th) International Joint Seminar (Daegu, Korea)
    • Related Report
      2022 Research-status Report
  • [Presentation] Analysis on The Effect of Input Data Characteristics and Model Structure in Deep Learning2023

    • Author(s)
      Yuma Tanaka, Sunmin Kim, and Yasuto Tachikawa
    • Organizer
      2023 BK21(4th) International Joint Seminar (Daegu, Korea)
    • Related Report
      2022 Research-status Report
  • [Presentation] EFFECTS OF INPUT VARIABLE SELECTION IN ARTIFICIAL NEURAL NETWORK FOR WATER STAGE FORECASTING2022

    • Author(s)
      Sunmin Kim, Kento Takami, and Yasuto Tachikawa
    • Organizer
      第67回水工学講演会(松山)
    • Related Report
      2022 Research-status Report
  • [Presentation] Selection of Input Variables in ANN for Hydrological Modeling2022

    • Author(s)
      Sunmin Kim, Kento Takami, and Yasuto Tachikawa
    • Organizer
      The 5th Japan-China-Korea Water Science Research Forum (online)
    • Related Report
      2022 Research-status Report

URL: 

Published: 2022-04-19   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi