人工知能による深層学習を利用した特発性側弯症の進行予測
Project/Area Number |
22K09353
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 56020:Orthopedics-related
|
Research Institution | Osaka University |
Principal Investigator |
藤森 孝人 大阪大学, 大学院医学系研究科, 助教 (80546888)
|
Co-Investigator(Kenkyū-buntansha) |
鈴木 裕紀 大阪大学, 大学院医学系研究科, 特任助教(常勤) (20845599)
武中 章太 大阪大学, 大学院医学系研究科, 講師 (40795861)
海渡 貴司 大阪大学, 大学院医学系研究科, 准教授 (70623982)
|
Project Period (FY) |
2022-04-01 – 2026-03-31
|
Project Status |
Granted (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2025: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2024: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 特発性側彎症 / 人工知能 / ニューラルネットワーク / 側弯症 / 自動計測 / 進行予測 |
Outline of Research at the Start |
特発性側弯症は成長期の脊柱に曲がりを生じる原因不明の疾患である。曲がりの進行を防ぐには、患者にとっては負担となる装具療法しかないのが現状である。しかし、いつ、どれくらいまで曲がりが進むのかを事前に予測することは難しい。 近年、様々な分野で、高い画像認識力を有する人工知能(AI)が注目を集めている。技術の進歩に伴い、今やAIの識別力は、人間を凌駕するに至っている。本研究の目的は、このAIに側弯症の画像データを学習させ、精度の高い側弯進行予測モデルを構築することである。これによって、側弯症診療にパラダイムシフトをもたらすことできると考えている。
|
Outline of Annual Research Achievements |
本研究では、特発性側弯症の進行メカニズムの予測と病態解明に取り組んでいる。AI技術の一つであるDeep learningを利用し、画像解析を行うことで、新たな知見を得ることを目指した。AIを用いて、経過観察例、装具治療例、手術治療例などの初期および経過後の画像データを学習させた。 具体的な研究内容として、画像パラメータ評価の自動化に注力した。特発性側彎症の症例の収集を行った。当院、及び多施設から症例を収集した。 これらに対して アノテーション作業を行い、計測に必要なランドマークを抽出した。このランドマークをもとに、いくつかのパラメータ(主胸部曲線(MT)、冠状バランス、T1傾斜、胸椎前弯(TK)、腰椎前弯(LL)、仙骨傾斜(SS)、骨盤入射(PI))が算出された。AIモデルについては、データセットをトレーニングデータとテストデータに分割した。グランドトゥルースとAI測定値の間の誤差を算出した。 5分割交差検証を行い、誤差は4~5度との結果を得た。正面像での誤差は許容範囲であるが、側面像での誤差はやや大きかった。 今後は、誤差を減らすために、アルゴリズムの改良を行う。さらに追加のデータセットの入手にも注力する予定である。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
順調に症例の収集が進んでいる。
|
Strategy for Future Research Activity |
引き続き、症例の収集、アノテーション作業、アルゴリズムの改良に努める。
|
Report
(1 results)
Research Products
(1 results)