• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Algorithms for Ultrametric Tree Optimization and Hierarchical Clustering Optimization

Research Project

Project/Area Number 22K11921
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60020:Mathematical informatics-related
Research InstitutionShizuoka University

Principal Investigator

安藤 和敏  静岡大学, 工学部, 教授 (00312819)

Project Period (FY) 2022-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2024: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords組合せ最適化 / クラスタリング / 系統樹 / デンドログラム / 超距離 / アルゴリズム / クラスター解析 / バイオインフォマティクス / 系統学
Outline of Research at the Start

超距離木は最も基本的な系統樹のモデルである.最良近似超距離木問題とは,対象とする生物種間の相違を表す行列を最も良く近似する超距離木を求める問題である.本研究では,最良近似超距離木問題及びそれに類似する問題に対する高速な局所探索アルゴリズムを開発する.また,階層クラスタリングによって生成されるクラスタの階層は超距離木と同値な概念であるデンドログラムと呼ばれる図式によって表現される.本研究では,超距離木最適化問題に対する局所探索アルゴリズムを階層クラスタリング最適化問題に応用する.本研究ではさらに,階層クラスタリング最適化問題に対する局所探索アルゴリズムを重複階層クラスタリング最適化へと拡張する.

Outline of Annual Research Achievements

研究計画調書に記載した3つの研究計画のうち,「(1)最良近似超距離木問題に対する局所探索アルゴリズムの開発」及び「(2)階層クラスタリング最適化問題に対する局所探索アルゴリズムの開発」に関連する研究を行った.
超距離木とは生物の進化の歴史を表現する基本的なモデルである.(1)の最良近似超距離木問題とは,相違行列と呼ばれる分析の対象となる生物種の相違を表わす行列Mが与えられたときにMに最も適合する超距離木を見出す問題である.本年度は適合度の指標がl1-ノルムのときのこの問題に対するkSS操作(k制限部分木交換操作)と呼ばれる2分木の変形操作に基づく局所探索アルゴリズムを開発した.また,このアルゴリズムの1反復あたりの計算時間が O(min{2^{k+1}, n} n^3 loglog n) であることを示した.ここで,n は入力の相違行列の次数である.
階層クラスタリング最適化問題の入力は類似行列と呼ばれる分析対象のデータの類似度を表す行列Sであり,その出力はデータ集合の分割の階層構造を表すクラスター木(あるいは,デンドログラム)である. 階層クラスタリング最適化問題は適切な目的関数(許容目的関数)を最小化するクラスター木を求める問題である.この問題はNP困難であるが,2022年に研究代表者を含むグループは目的関数がDasguptaの目的関数の場合にkSS操作に基づく1反復あたりの計算時間が O(n min{2^{k+1},n}k)である局所探索アルゴリズムを提案した.本年度はk3SP操作(k制限部分木置換操作)と呼ばれるkSS操作を一般化する2分木の変形操作を導入し,この操作に基づく局所探索アルゴリズムを開発した.また,このアルゴリズムの1反復あたりの計算時間は O(n min{2^{k+1},n}k) であることを示した.ここで,n は入力の類似行列の次数である.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

【研究実績の概要】に記載した通り,2023年度は本研究課題の研究計画「(1)最良近似超距離木問題に対する局所探索アルゴリズムの開発」及び「(2)階層クラスタリング最適化問題に対する局所探索アルゴリズムの開発」に関連する2つの研究を行い,国内の学会においてその研究成果を公表した.また成果の公表までには至らなかったが,研究計画(2)に関連する別の研究でも進展が見られた.このように2023年度は本研究課題の複数の部分課題において新たな進展が得られた.一方で昨年度研究代表者は管理職に任命され,所属部局での管理運営業務が著しく増加した.そのため前年度までの研究成果を論文としてまとめる作業が大幅に停滞している.こうしたことから現在までの進捗状況を「やや遅れている」と判断した.

Strategy for Future Research Activity

これまでに本研究課題の3つの研究計画「(1)最良近似超距離木問題に対する局所探索アルゴリズムの開発」,「(2)階層クラスタリング最適化問題に対する局所探索アルゴリズムの開発」及び「(3)重複階層クラスタリング最適化問題に対する局所探索アルゴリズムの開発」のうち,(1)と(2)についてはいくつかの研究成果が得られ,既に国内の学会でその成果の発表を行っている.2024年度以降ではこれらの研究成果を国際会議において発表し,さらには英語論文としてまとめた上で国際的な学術雑誌に投稿する予定である.
研究計画(1)に関連する研究で今後の推進方策としては,適合度の指標がl2-ノルムのときの最良近似超距離木問題の局所探索アルゴリズムの開発がある.昨年度はl1-ノルムのときの最良近似超距離木問題に対するkSS操作に基づく局所探索アルゴリズムを開発した.このアルゴリズムのさらなる高速化及びkSS操作とは異なる2分木の変形操作に基づく局所探索アルゴリズムの開発は今後の課題である.
研究計画(2)については,これまでに提案されている許容目的関数のクラスとは異なる許容目的関数のクラスを考察しその特徴付けを与えるとともに,最適化のための局所探索アルゴリズムを開発することを目的とする.
研究計画(3)についてはまだその研究に着手していない段階であるが,2024年度から検討を始める予定である.

Report

(2 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • Research Products

    (4 results)

All 2024 2023 2022

All Presentation (4 results)

  • [Presentation] 階層クラスタリング最適化問題に対する部分木の置換操作に基づく局所探索アルゴリズム2024

    • Author(s)
      安藤和敏, 辻川侑馬
    • Organizer
      日本オペレーションズ・リサーチ学会2024年春季研究発表会
    • Related Report
      2023 Research-status Report
  • [Presentation] l1-最良近似超距離木問題に対する部分木交換操作に基づく局所探索アルゴリズム2023

    • Author(s)
      安藤和敏, 石田京太郎
    • Organizer
      日本オペレーションズ・リサーチ学会2023年秋季研究発表会
    • Related Report
      2023 Research-status Report
  • [Presentation] 階層クラスタリングに対する許容的目的関数の特徴付けと関連する最適化問題に対する近似アルゴリズム2023

    • Author(s)
      安藤和敏, 筑波竜希
    • Organizer
      日本オペレーションズ・リサーチ学会2023年春季研究発表会
    • Related Report
      2022 Research-status Report
  • [Presentation] 階層クラスタリング最適化問題に対する局所探索アルゴリズム2022

    • Author(s)
      安藤和敏, 辻川侑馬
    • Organizer
      日本オペレーションズ・リサーチ学会2022年秋季研究発表会
    • Related Report
      2022 Research-status Report

URL: 

Published: 2022-04-19   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi