• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

データコラボレーション解析による分散協調特徴量選択手法の研究

Research Project

Project/Area Number 22K12144
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

叶 秀彩  筑波大学, システム情報系, 准教授 (60814001)

Project Period (FY) 2022-04-01 – 2026-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2025: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2024: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2023: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsfeature learning / feature selection / active feature selection / 特徴選択 / 中間表現 / データコラボレーション
Outline of Research at the Start

近年のデータ取得の簡易化に伴い、データは大規模・分散化している。分散管理されているデータは情報秘匿などの観点から共有が困難であり、またデータ数の不足や偏りによるリスク因子などの重要な特徴量の学習は難しくなる。重要な特徴量を学習するために,本研究では分散データの直接的な共有を行うことなく、中間表現によるデータ統合を行うことで、分散協調特徴量選択アルゴリズムを開発する。具体的には、各機関が独自に元データの抽象化を行い、抽象化されたデータ(中間表現)を同一の潜在空間に射影し、データ統合を行うことで特徴量選択のモデルを構築する。実データによる実証実験を行い、開発する特徴量選択手法の有効性を示す。

Outline of Annual Research Achievements

This year, we focus on the research on feature learning-based methods and their application in bioinformatics. To address the challenges of limited samples and data imbalance, we present a novel framework for feature learning to analyze complex data structures, which are applied to predict antibiotic activity and enhance the efficiency of antibiotic discovery. In order to effectively learn the complex data, we utilize contrastive learning to extract the important features from complex structures. By integrating data augmentation and a pre-trained RoBERTa model, our method is able to accurately predict the hEFG blocker.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

In addressing the challenges posed by limited samples and imbalances within them, we introduce innovative methods to enhance feature learning and analyze complex data structures. Our approaches employ contrastive learning to effectively capture critical features from complex datasets, and integrates data augmentation alongside a pre-trained RoBERTa model to predict hEFG blockers with high precision, thus advancing the field of antibiotic discovery.

Strategy for Future Research Activity

In the next step, we will address with data that is distributed in different locations. We're going to propose methods that learn from the data together without compromising privacy. We'll use effective techniques, including federated learning, to learn important features from the data. We're also planning to apply these methods to data that comes from multiple perspectives to improve how we combine and use this kind of data.

Report

(2 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • Research Products

    (15 results)

All 2024 2023 2022 Other

All Int'l Joint Research (1 results) Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results) Presentation (7 results) (of which Int'l Joint Research: 7 results,  Invited: 1 results) Patent(Industrial Property Rights) (1 results)

  • [Int'l Joint Research] Xidian University(中国)

    • Related Report
      2022 Research-status Report
  • [Journal Article] FIAMol-AB: A feature fusion and attention-based deep learning method for enhanced antibiotic discovery2024

    • Author(s)
      He Shida、Ye Xiucai、Dou Lijun、Sakurai Tetsuya
    • Journal Title

      Computers in Biology and Medicine

      Volume: 168 Pages: 107762-107762

    • DOI

      10.1016/j.compbiomed.2023.107762

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Journal Article] CLOP-hERG: The Contrastive Learning Optimized Pre-Trained Model for Representation Learning in Predicting Drug-Induced hERG Channel Blockers2024

    • Author(s)
      He Shida、Ye Xiucai、Sakurai Tetsuya
    • Journal Title

      Medinformatics

      Volume: - Issue: 3 Pages: 1-9

    • DOI

      10.47852/bonviewmedin42022049

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Journal Article] Multi-omics clustering for cancer subtyping based on latent subspace learning2023

    • Author(s)
      Ye Xiucai、Shang Yifan、Shi Tianyi、Zhang Weihang、Sakurai Tetsuya
    • Journal Title

      Computers in Biology and Medicine

      Volume: 164 Pages: 107223-107223

    • DOI

      10.1016/j.compbiomed.2023.107223

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Journal Article] Interactive gene identification for cancer subtyping based on multi-omics clustering2023

    • Author(s)
      Ye Xiucai、Shi Tianyi、Cui Yaxuan、Sakurai Tetsuya
    • Journal Title

      Methods

      Volume: 211 Pages: 61-67

    • DOI

      10.1016/j.ymeth.2023.02.005

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Sequential reinforcement active feature learning for gene signature identification in renal cell carcinoma2022

    • Author(s)
      Meng Huang, Xiucai Ye, Akira Imakura, Tetsuya Sakurai
    • Journal Title

      Journal of Biomedical Informatics

      Volume: 128 Pages: 104049-104049

    • DOI

      10.1016/j.jbi.2022.104049

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Multiview network embedding for drug-target Interactions prediction by consistent and complementary information preserving2022

    • Author(s)
      Shang Yifan、Ye Xiucai、Futamura Yasunori、Yu Liang、Sakurai Tetsuya
    • Journal Title

      Briefings in Bioinformatics

      Volume: 23 Issue: 3

    • DOI

      10.1093/bib/bbac059

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Multi-omics clustering based on interpretable and discriminative features for cancer subtyping2023

    • Author(s)
      Tianyi Shi, Xiucai Ye, Tetsuya Sakurai
    • Organizer
      IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multi-view Network Embedding with Structure and Semantic Contrastive Learning2023

    • Author(s)
      Yifan Shang, Xiucai Ye, Tetsuya Sakurai
    • Organizer
      IEEE International Conference on Multimedia and Expo (ICME)
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Common and Unique Features Learning in Multi-view Network Embedding2023

    • Author(s)
      Yifan Shang, Xiucai Ye, Tetsuya Sakurai
    • Organizer
      International Joint Conference on Neural Networks (IJCNN)
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Collaborative Future Selection for Distributed Data2023

    • Author(s)
      Ye Xiucai; Imakura Akira; Sakurai Tetsuya
    • Organizer
      SIAM Conference on Computational Science and Engineering (CSE23)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Cost-Efficient Integrated Analysis of Distributed Data in Secure Environments2023

    • Author(s)
      Sakurai Tetsuya; Imakura Akira; Ye Xiucai; Bogdanova Anna
    • Organizer
      SIAM Conference on Computational Science and Engineering (CSE23)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multiview Network Embedding for Drug-target Interaction Prediction2023

    • Author(s)
      Ye Xiucai; Shang Yifan; Futamura Yasunori; Sakurai Tetsuya
    • Organizer
      International Conference on Machine Learning and Computing (ICMLC)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Ensemble Learning for Cluster Number Detection Based on Shared Nearest Neighbor Graph and Spectral Clustering2022

    • Author(s)
      Weihang Zhang, Xiucai Ye, Testuya Sakurai
    • Organizer
      International Joint Conference on Neural Networks (IJCNN)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Patent(Industrial Property Rights)] 特徴量選択支援プログラム及び特徴量選択支援方法2023

    • Inventor(s)
      今倉暁, 叶 秀彩, 櫻井鉄也
    • Industrial Property Rights Holder
      今倉暁, 叶 秀彩, 櫻井鉄也
    • Industrial Property Rights Type
      特許
    • Filing Date
      2023
    • Acquisition Date
      2023
    • Related Report
      2023 Research-status Report

URL: 

Published: 2022-04-19   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi